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Nonlinear effects in fMRI BOLD data may substantially influence

estimates of task-related activations, particularly in rapid event-

related designs. If the BOLD response to each stimulus is assumed to

be independent of the stimulation history, nonlinear interactions

create a prediction error that may reduce sensitivity. When stimulus

density differs among conditions, nonlinear effects can cause

artifactual differences in activation. This situation can occur in rapid

event-related designs or when comparing blocks of unequal lengths.

We present data showing substantial nonlinear history effects for

stimuli 1 s apart and use estimates of nonlinearities in response

magnitude, onset time, and time to peak to form a low-dimensional

parameterization of these nonlinear effects. Our estimates of non-

linearity appear relatively consistent throughout the brain, and these

estimates can be used to form adjusted linear predictors for future

rapid event-related fMRI studies. Adjusting the linear model for these

known nonlinear effects results in a substantially better model fit. The

biggest advantages to using predictors adjusted for known nonlinear

effects are (1) higher sensitivity at the individual subject level of

analysis, (2) better control of confounds related to nonlinear effects,

and (3) more accurate estimates of design efficiency in experimental

fMRI design.

D 2004 Elsevier Inc. All rights reserved.
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Introduction

Several studies have demonstrated the existence of nonlinear-

ities in blood oxygen level-dependent (BOLD) fMRI data (Birn et

al., 2001; Boynton et al., 1996; Buxton et al., 1998; Friston et al.,

2000; Huettel and McCarthy, 2001; Vazquez and Noll, 1998).

These nonlinearities are believed to arise from both nonlinearities

in the vascular response, believed to be caused primarily by

viscoelastic properties of blood vessels (Buxton et al., 1998;

Vazquez and Noll, 1998, 2002), and nonlinearities at the neuronal
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level, such as the adaptive behavior of neuronal activity (Kileny et

al., 1980; Logothetis, 2003; Logothetis et al., 2001; Wilson et al.,

1984). Models of the underlying physiological changes that induce

nonlinearities in the observed signal have been developed,

primarily with the goal of understanding the nature of the BOLD

response (Buxton and Frank, 1997; Buxton et al., 1998; Vazquez

and Noll, 1998). Estimation methods (Cohen, 1997; Friston et al.,

1998, 2000) have also been developed that may be used to model

nonlinearities in functional experiments.

Nonlinearity is an important issue in the design of experiments,

and in the analysis of both blocked and event-related fMRI data

under certain conditions (we present some scenarios below). In

experimental design, the solution to the optimal stimulus spacing

for an event-related design depends on the magnitude of nonlinear

stimulus effects (Wager and Nichols, 2003). In a truly linear

system, the efficiency of detecting a difference between conditions

(e.g., Task A–Task B) increases without bound as the interstimulus

interval approaches zero (e.g., Josephs and Henson, 1999), which

is clearly not true of BOLD data (discussed further in Wager and

Nichols, 2003). The true sensitivity is limited by nonlinear

saturation in the BOLD signal, and to develop maximally sensitive

experimental designs we must have a reasonably accurate model of

the saturation. Virtually all work on experimental fMRI design

assumes linear responses (Birn et al., 2002; Liu, 2004; Liu and

Frank, 2004; Liu et al., 2001; Mechelli et al., 2003), or at least a

very simple nonlinear model (Wager and Nichols, 2003), and

would benefit from a simple approximate characterization of

expected nonlinear responses.

Nonlinear effects are largely ignored in neuroscientific and

psychological studies using BOLD fMRI due possibly to several

reasons. First, the finding that BOLD responses were approx-

imately linear over a range of stimulus durations promised to

greatly simplify analysis (Boynton et al., 1996). Nonlinearities are

believed to be relatively small compared to the overall BOLD

effects for events spaced more widely than 2 s (Buckner, 1998),

although some studies have found fairly substantial saturation

effects (17–25%) at 5 s (Miezin et al., 2000). Second, most work

on development of expected hemodynamic responses has focused

on determining canonical responses to single stimuli rather than
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exploring interactions among them. Finally, existing models such

as the Volterra series (Friston et al., 1998, 2000) require fitting a

large number of parameters, which may not be practical for many

multicondition fMRI experiments due to overfitting and loss of

power. In addition, the interpretation of parameter estimates with

such models becomes more problematic.

Nonlinearities in the BOLD response may be of more practical

concern for neuroscientists and psychologists than is generally

recognized. They pose the biggest problem in rapid ER designs,

which have become much more popular in the literature due to

their potential for more specific psychological and neuroscientific

inference, including linking BOLD activity to specific psycho-

logical events within trials and estimating the relative latency of

responses to different events (Henson et al., 2002; MacDonald et

al., 2000; Miezin et al., 2000; Wagner et al., 1998). In a rapid ER

design, events of various types are presented in random or

pseudo-random order, and temporal stochasticity is often intro-

duced into the design. Ignoring nonlinearities in several exper-

imental scenarios could have severe negative consequences for

the validity of the study. We expand briefly on several of these

scenarios below.

Scenario 1: comparing blocks of different lengths or events in

rapid designs that are not carefully balanced

In a simple, periodic task–control block design, the shape and

overall magnitude of the BOLD response to a stimulation block of

closely spaced events is highly determined by nonlinearities in the

BOLD response. Correctly modeling the shape of the response to a

stimulation block requires a model of nonlinear effects. If the

blocks are of equal durations, the expected nonlinearities are also

equivalent and do not pose a serious problem; but if blocks are of

unequal durations, problems in interpreting activations can arise. If

blocks are of unequal durations (e.g., 20 s periods for condition A,

and 10 s periods for B), differences in the nonlinear contribution to

measured responses in each block can produce artifactual

activations. Because the magnitude of the observed BOLD signal

is a nonlinear function of both the time on task and the magnitude

of neuronal responses, and if the time on task is not matched, it

becomes very difficult to interpret observed BOLD differences in

terms of neuronal activity differences. This problem is alluded to in

discussions of bduty cycle,Q which highlight the difficulties in

making inferences if the time on task is not known (Hernandez et

al., 2002). A concrete illustration of how false-positives may be

created and how the same principle applies to rapid ER designs is

provided in the discussion and in Fig. 7.

Scenario 2: comparing temporally adjacent periods

Many investigators study processes that are extended in time,

such as working memory (e.g., D’Esposito et al., 1999; Haxby et

al., 2000). In a working memory trial, stimuli are typically

presented for study, and participants must maintain memories of

these stimuli over a delay interval. A typical frontal cortex

response looks like a large rise following study, which decreases

and plateaus during the delay interval (Haxby et al., 2000). Is the

region responsive during study, maintenance, or both? Is it more

responsive during study than maintenance, as the largest BOLD

signal change immediately follows study? Without a good model

of nonlinearity, it is impossible to interpret the relative magnitudes

of the study- and delay-related signals.
Scenario 3: individual activation and individual differences

Rapid ER designs may offer a substantial increase in detection

power for individual subjects, even when nonlinearities are not

accounted for (Burock et al., 1998). A simple nonlinear model

could further provide increased detection sensitivity in individual

participants by providing better fits to time course data. In addition,

accounting for nonlinear effects may provide more accurate

estimates of an individual’s true response magnitude, improving

the accuracy of correlations between activation and performance

across participants. (The latter is true primarily when the stimulus

sequences, and thus nonlinear effects, differ across individuals.)

Scenario 4: comparing subpopulations of trials separated post hoc

Another case in which nonlinear effects should be accounted

for is when performance in an ER-fMRI design is correlated with

brain activation on a trial-by-trial basis, or trials are otherwise

separated on the basis of performance. Recent examples come

from the literature on cognitive interference (e.g., Kerns et al.,

2004) and success of long-term memory encoding (e.g., Davachi

and Wagner, 2002). In these cases, estimates of response

magnitude to individual trials or subpopulations of trials are

expected to be much more accurate if nuisance effects due to

stimulation history are parsed out. In addition, confounds due to

stimulation history can be avoided.

As an example, suppose a researcher is interested in trial–

history effects (e.g., Kerns et al., 2004)—that is, whether the

magnitude of activation on a trial (X) depends on whether

preceding trials were of type I or C. Thus, the researcher’s

hypothesis is that the neural response to X is greater for C–X

than I–X. Linear modeling, either with a known HRF shape or

deconvolution, assumes that the responses to the preceding trial

(C or I) can be separated from the response to X, and any

observed BOLD differences in X are neural and of psycho-

logical interest. However, what happens if the response to I is

greater than to C, and that response carries over to produce

nonlinear saturation in the response to X? Such effects can be

substantial (17–25%) for trials spaced as far as 5 s apart (Miezin

et al., 2000). In this case, nonlinearities would decrease

responses to I–X more than C–X, creating a C–X N I–X effect.

Kerns et al. (2004) tested just such a hypothesis with trials spaced

3 s apart. They found the expected effect, C–X N I–X, in a region

of anterior cingulate cortex known to show I N C responses

(MacDonald et al., 2000). Thus, it is reasonable to ask whether the

observed effects were neural or vascular in origin. In experimental

paradigms for which this confound cannot be removed by altering

the design, incorporating a good model of nonlinearity into the

analysis can help ameliorate the problem.

The current study

In this paper, we attempt to characterize nonlinear effects in

visual and motor cortex as an empirical function of stimulus

history. We find substantial nonlinearities in the magnitude, peak

delay, and dispersion of the hemodynamic response at an ISI of 1

s, which poses a serious problem for rapid ER designs at short

ISIs. We find that these nonlinear effects are relatively consistent

throughout the brain areas tested and develop a set of linear

equations approximating their form. These equations are used to

create a modified convolution that allows the response magnitude,
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onset delay, and peak delay to vary as a function of the position

of the stimulus relative to others of the same type. Thus, as in

forms of linear modeling in common practice (e.g., Friston et al.,

1995a), one linear predictor for each event type is fit to the data;

but our predictors are constructed taking into account nonlinear

interactions of the form we observe experimentally. In essence,

this process is a low-dimensional parameterization of nonlinear

effects. The modified predictors can then be used in the GLM

framework (e.g., Friston et al., 1995b), producing a more accurate

prediction of the response than the prediction provided without

accounting for nonlinearity.

We find that the adjusted linear model is more accurate than the

standard GLM at capturing the variation in the observed signal. In

addition, it can be used to provide more meaningful predictions of

the response to a continuous stimulation epoch that are less

dependent on an arbitrary chosen sampling resolution.
Fig. 1. Representative motor and visual activations from the localizer task

(top and bottom panels, respectively) for a representative participant

selected at random. The left panels show activation for the contrast [right

stimulation N left stimulation], and the right panels show activation for [left

stimulation N right stimulation]. The left side of each slice is the left side of

the brain. The color bar shows t values for activation reliability. The

activation threshold was t N 3.5. Each of the 11 participants showed

activation in left and right visual and motor cortex at this threshold, and

these activations were used as regions of interest in the main task.
Methods

Tasks and data collection

Twelve students at the University of Michigan were recruited

and paid US$50 for participation in the study. All human

participants procedures were conducted in accordance with

Institutional Review Board guidelines. One participant failed to

show visual activation to a positive control (debriefing revealed

that he was extremely sleepy) and was excluded from further

analysis. One participant showed atypical visual and motor

hemodynamic responses that were not fit well by the canonical

model and was excluded from nonlinearity analyses, leaving a

final sample of n = 10.

Participants performed two visual–motor tasks in which they

observed contrast-reversing checkerboards (16 Hz) and made

manual button-press responses. In the first task (localizer), blocks

of unilateral contrast-reversing checkerboards were presented on an

in-scanner LCD screen (IFIS, Psychology Software Tools). Data

were collected in a single functional run comprising 10 blocks of

16 s each of alternating left and right hemifield stimulation.

Subjects made motor responses continuously with the index and

middle fingers of the ipsilateral hand; thus, when the checker-

boards appeared on the left of fixation, participants responded with

the left hand and vice versa for the right-hemifield checkerboards.

Results were used to localize primary visual and motor cortices in

each hemisphere for each subject.

The main task consisted of eight functional runs of visual/motor

stimuli. In each run, a series of brief contrast-reversing checker-

board stimuli (250 ms stimulus duration) separated by a 1-s

stimulus–onset asynchrony (SOA) were observed by participants.

Stimuli were as close to full field as the stimulus presentation

system allowed (approximately 308 of visual angle). Participants

were instructed to press the index and middle fingers of both hands

together each time they saw a checkerboard stimulus. Each

stimulus series consisted of either 1, 2, 5, 6, 10, or 11 stimuli

separated by 1 s, followed by 30 s of rest. The order of the six

series types (i.e., series of 1, 2, 5, 6, 10, or 11 stimuli) was

counterbalanced across runs, and two trials of each train length

were presented in each run, for a total of 16 trials per series length

for each participant.

Spiral-out gradient echo images were collected on a GE 3T

fMRI scanner (Noll et al., 1995). Seven oblique slices were
collected through visual and motor cortex, 3.12 � 3.12 � 5 mm

voxels, TR = 0.5 s, TE = 25 ms, flip angle = 90, FOV = 20 cm.

Data analysis

Data from all images were corrected for slice–acquisition

timing differences using a four-point sinc interpolation (Oppen-

heim et al., 1999) and corrected for head movement using a six-

parameter affine registration (Woods et al., 1998) prior to analysis.

Determining ROIs

Data from the localizer task were used to derive visual and

motor regions of interest (ROIs) for each participant. For each

participant, data were analyzed using SPM99 (Friston et al., 1995a;

no global scaling, high-pass filter 100 s, no low-pass filter).

Statistical maps comparing left N right and right N left visual

hemifield stimulation (with corresponding concurrent left- or right-

hand motor responses) were thresholded at t N 3.5 (approximately

P b 0.0003).

For each map, the largest region of contiguous suprathreshold

voxels surrounding the calcarine fissure (for visual cortex) or the

precentral gyrus (for motor cortex) in the hemisphere contralateral

to stimulation was saved as a region of interest (ROI). Subsequent

analyses were performed on the average activity within these

regions (Fig. 1).

Time series analysis and HRF fitting

For the analysis of the main task, average time courses acQ

ross voxels in each of the four regions were extracted for each

subject. Time courses were mean centered within each run,

concatenated across runs, and high-pass filtered using the method
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of SPM99 at 0.0118 Hz (85 s). Individual observations were

excluded that were more than three standard deviations from the

mean of the filtered time series. Activity was averaged across

trials of each series type, omitting outlier values casewise, for

each ROI (Fig. 2).

To compare series of different lengths, difference waveforms

for three comparisons—2 stimulations vs. 1, 6 vs. 5, and 11 vs.

10—were calculated. These difference waveforms represent the

residual signal of the 2nd, 6th, and 11th stimulus in the sequence.

A canonical hemodynamic response function (implemented in

SPM, http://www.fil.ion.ucl.ac.uk/spm/ (Friston et al., 1995b), with

free parameters for magnitude (height), onset delay, and time to

peak, was fit to the difference waveforms for each pair of

conditions to determine the residual magnitude, onset delay, and

peak delay of the response to the nth stimulus (i.e., 2nd, 6th, or

11th). Fitting was performed with the Levenberg–Marquardt

method (Press et al., 1992; Miezin et al., 2000).

The resulting parameter values for height, onset time, and peak

delay were averaged across subjects to obtain group estimates for

each ROI. These parameter estimates varied as a function of the

position of the stimulus in the series, indicating that height, onset

time, and peak delay are nonlinear with respect to stimulation

history. HRF parameter estimates for each condition within

participant were analyzed using factorial repeated measures
Fig. 2. BOLD responses averaged across trials and participants for each region of

solid or dashed lines, respectively, and the difference between these waveforms w

responses to the 6th and 11th stimulus in a series were estimated by subtractin

respectively. Subtractions were performed on individual trial-averaged data, and the

nonlinearity (e.g., a brandom effectsQ analysis). The high-frequency noise observab

related pulsatility that would be aliased into the task frequency at longer TRs.
ANOVA, with functional region (visual vs. motor), hemisphere

(left vs. right), and stimulus position in series (1st, 2nd, 6th, or

11th) as factors.

We chose to approximate the form of these nonlinearities

across regions using a biexponential model, which provides a

canonical, mathematical description of the nonlinearity (one can

think of this as choosing an exponential basis set to describe the

nonlinear behavior in height, onset, and peak delay of the HRF).

Thus, a biexponential function was fit to the average extracted

parameter estimates across participants and brain regions (Fig.

4B), using a standard nonlinear least squares algorithm (lsqcur-

vefit.m) in Matlab 6.1. The function was of the form:

y ¼ Ae�ax þ Be�bx ð1Þ

with free parameters A and a, B and b describing the scaling

(allowed to be positive or negative) and exponent of two

exponential curves. The fitted biexponential curve describes the

nonlinear change in BOLD magnitude, onset time, and peak

delay as a function of stimulation history.

We found that a biexponential model was necessary to fit the

data, as onset and time to peak parameters varied nonmonotonically

with stimulus history; a single exponential model is always

monotonic and is therefore inadequate. Although a monoexponen-
interest. Responses to series of one or two visual stimuli are shown in red

as used to estimate the residual response to the second stimulus. Residual

g the solid from the dashed green (sixth) and blue waveforms (eleventh),

error across participants was used as the error term in statistical analyses of

le in the waveforms is centered around 1 Hz and is likely due to heartbeat-
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Fig. 3. Effects of varying predicted hemodynamic response (HRF) height

(top panel), time to onset (middle panel), and time to peak (bottom panel) of

the canonical SPM99 HRF. An HRF with these three free parameters was fit

to trial-averaged data using nonlinear least squares. Starting estimates are

the default SPM99 values, shown in blue. Time to onset and time to peak

are not orthogonal, but together they capture much of the observed

variability in HRF latency and width. Fits with more free parameters (e.g.,

dispersion, height-to-undershoot ratio) were obtained, but they contributed

T.D. Wager et al. / NeuroImage 25 (2005) 206–218210
tial curve might be adequate for the height parameter, we were

concerned with accurately predicting the form of the response rather

than fitting the simplest possible model, so the biexponential model

is a better choice. Two advantages of the biexponential are that it

provides both a good fit to the data and reasonable values if

extrapolated beyond the range of data collected. The fits asymptote

at 0 or some constant value as stimulus position approaches infinity.

This property is physiologically plausible: the effects of stimulus

position in the series will become negligible as the physiological

system evolves toward steady state. That is, if there have been no

recent stimuli, a stimulus will affect BOLD responses to successive

ones, but if stimulation has been occurring for a long time (e.g., 1

min), one additional second of stimulation will have little effect on

ensuing BOLD responses. (This simplification, however, may cause

the model to underestimate the BOLD response with such long

stimulation times; thus, the model is most useful for event-related

designs and shorter epochs.) For time to peak, the model was fit to

centered data and the mean time to peak was added as a constant to

the equation; thus, the time to peak approaches the canonical HRF

value as the system approaches steady state (Fig. 3).

Comparison of nonlinear with linear model and balloon model

To compare the impact of observed nonlinearities on model

fits, we used a modified linear convolution that takes into account

stimulation history. The linear regressors of this model were

constructed by adjusting the height, time to onset, and time to

peak of the predicted HRF for each stimulus using the equations

produced by the biexponential fitting (see Results). We compare

this dadjustedT linear model against two benchmarks, the standard

linear model and the predicted response of the balloon model

(Buxton et al., 1998; Friston et al., 2000; Figs. 5 and 6), as well as

the standard linear model in terms of their mean squared error

(MSE). The balloon model was fit to the aggregate data using a

nonlinear least squares algorithm in Matlab (Mathworks Inc.,

Natick MA). The blood flow response amplitude, duration, and

delay were designated as free parameters of the model, in addition

to a blood volume hysteresis parameter and a BOLD response

amplitude parameter.

little additional explanatory power and are not further reported.
Results

Visual and motor activation

In the blocked localizer run, all subjects showed activity in

discrete regions of visual cortex (around the calcarine fissure) and

motor cortex (in the precentral sulcus/gyrus) at the threshold of t N

3.5. As expected, right hemisphere activations were produced by

the left N right stimulation comparison, and vice versa for left

hemisphere activations. These four regions (right and left visual

and motor regions) were used as ROIs in the event-related analysis.

The average responses in each region for each trial type, a

stimulus series of either 1, 2, 5, 6, 10, or 11 stimuli, across trials

and participants are shown in Fig. 2. In the figure, solid lines show

responses for trains of 1, 5, and 10 stimuli. Dashed lines show

responses for 2, 6, and 11 stimuli.

Estimates of nonlinearity

Results for ANOVA on response magnitudes showed that the

first stimulus produced the largest response, with each successive
stimulus position tested producing a smaller activation. Percent

signal changes were 0.66%, 0.44%, 0.33%, and 0.20% for the

1st, 2nd, 6th, and 11th events. The main effects of stimulus

position (F = 11.73, MSE = 2.02, P b 0.001 with Huynh–Feldt

correction for nonsphericity) and linear trend in stimulus position

(F = 31.27, MSE = 5.04, P b 0.001) were significant. Due to

the unequal intervals chosen for stimulus position (1st, 2nd, 6th,

and 11th), the linear trend actually signifies a nonlinear (e.g.,

exponential) decrease in response magnitude as a function of

prior stimulation history. The trend could equivalently be

interpreted as larger than expected activation for brief events

(Birn et al., 2001), but we prefer to frame the effects in terms of

smaller activations for repeated events (response saturation),

reflecting an underlying neural and/or vascular hysteresis

(Buxton and Frank, 1997; Vazquez and Noll, 1998).

No other main effects or interactions were significant (max F

across all other effects = 2.03, P = 0.18), with the exception of

quadratic trends in the region � stimulus position (F = 3.84, P =

0.07) and hemisphere � stimulus position (F = 4.04, P = 0.06)

interactions. These effects suggest that in visual cortex, the

response decreased more than in motor cortex for the second
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stimulus compared to the first, but that the asymptotic value was

slightly higher than in motor cortex, as shown in Fig. 4A. Overall,

the results show a reasonable degree of consistency across brain

regions—the main effects of saturation are much larger than the
Fig. 4. (A) Parameter estimates for height (left panel), time to onset (middle), a

function of position in the stimulus series (x-axis) in each of the four ROIs (lines).

generally larger than the error for within-subjects comparison across stimulus positi

consistent across areas, with small but significant differences between visual and

their parameter estimates are negatively correlated and display reciprocal behav

meaningful when used together. (B) Parameter estimates for each ROI (circles) an

descriptions of the equations (see text) used to provide a general model of nonlin
interactions between saturation and region—indicating that a

general model across brain regions could be formulated.

Because our primary goal was to accurately estimate

parameters rather than test significance, we estimated onset and
nd time to peak (right panel) in percentage of signal change ( y-axis) as a

Error bars show the standard error of the mean across participants, which are

on. Nonlinear effects (i.e., effects of position, x-axis) are large and relatively

motor regions. Because time to onset and time to peak are not orthogonal,

ior (one is high when the other is low), and so these estimates are only

d exponential fits to parameter estimates (solid lines). The fits are graphical

ear effects.
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peak delay parameters only for conditions within participants

showing significant activation to the nth stimulus (e.g., 6 vs. 5

stimuli produces a positive BOLD activation), on the basis that

estimating response delay is not meaningful if there is no

significant activation. The delay parameters that could be mean-

ingfully estimated were used in prediction, and mean values for

onset and peak delay are shown in Fig. 4A. The resulting missing

values in the data set made ANOVA analysis of delay difficult, as

there were not enough cases (10 subjects) with valid latency

estimates for all conditions (4) in all regions (4), which may cause

overestimation of the degrees of freedom. However, for com-

pleteness, we report ANOVA results here with missing values

replaced with across-subjects means.

ANOVA results for onset delay showed a later onset delay for

motor regions than visual ones, as expected (F = 6.51, MSE =

5.66, P b 0.03), a nonmonotonic effect is stimulus position (F =

4.79, MSE = 10.23, P b 0.01), and an interaction between visual/

motor region, hemisphere, and stimulus position (F = 4.86, MSE =

2.70, P b 0.03) caused by the late onset for left motor cortex after

prolonged stimulation (Fig. 4A, center panel). No other effects

were significant. Results for time-to-peak showed a significant

interaction between visual/motor and hemisphere (F = 7.69, MSE =

1.14, P = 0.02), with later time-to-peak for motor than visual

regions only in the left hemisphere. No other effects were

significant, although the effect of stimulus position showed a trend

(F = 2.75, P = 0.06). The nonmonotonic effects of delay and time-

to-peak in opposite directions suggests that the effects may be

related to collinearity between the regression parameters for onset

delay and time to peak. Thus, fitted responses for later stimuli in a

sequence tend to begin later and rise slightly faster, but the result is

little overall change in the delay of the response.

Equations for predicted nonlinearity

Biexponential fits to the nonlinearity estimates are shown in

Fig. 4B. Three equations were derived that predict relative BOLD

magnitude, onset delay, and peak delay as a function of stimulation

history (of repeated brief 1 s stimulations). All of these equations

give parameter values as a function of the stimulus position in a

sequence of stimuli, and they are given below:

m ¼ 1:7141e�2:1038x þ 0:4932e�0:0770x ð2Þ

d ¼ � 13:4097e�1:0746x þ 4:8733e�0:1979x ð3Þ

p ¼ 37:5445e�2:6760x � 3:2046e�0:2120x þ 5:6344 ð4Þ

where m is the stimulus magnitude, as a proportion of the

canonical HRF height with no stimulation history, d is the onset

delay of the canonical SPM99 HRF in s, and p is the time to peak

of the BOLD response in s. These equations constitute the core of

our predictive model, and we use these equations to perform a
Fig. 5. (A) Predicted responses to stimulation in the first 4 min of the main exp

nonlinearity estimates (red), and the balloon model (blue). Deflections show the

in that order. Of interest is the relative magnitude of the responses to stimulati

(black line) for the three models to the same series as in A. Vertical black lines

response to brief trains (one or two stimuli) because the relative heights of shor

and balloon fits are more accurate. (C) Panels show the group average data (t

particular series length, as in Fig. 2. The length of each series is shown in the le

trains of stimuli.
modified convolution of the stimulus sequence as a function of

prior stimuli that have recently occurred. The full form of the

hemodynamic response, which assumes the shape of the difference

of two gamma functions using modified shape (p) and offset (d)

parameters, is:

f tð Þ ¼ m xð Þ

max

�
t�d xð Þð Þp xð Þ�1

e�ktRl

0
tp xð Þ�1e�kdt

�

�
 
t � d xð Þð Þp xð Þ�1

e�ktRl
0
tp xð Þ�1e�kdt

� 1

6

 
t � d xð Þð Þ15e�ktRl

0
t15d�kdt

!!
ð5Þ

where t is the time following stimulus onset at some arbitrary divisor

of the TR (e.g., 16 samples per TR); x is the position in the stimulus

sequence (e.g., 1 is the first time a stimulus occurs in a given time

frame); and k is a constant scaling parameter equal to the TR / the

sampling resolution. The first term is a scaling parameter for the

magnitude of the response. The second term describes the gamma

function for the positive BOLD response, normalized by its integral,

minus the gamma function describing the undershoot (scaled to 1/6

the height of the positive response and also normalized).

This function is identical to that implemented in SPM in

spm_hrf.m, with p as the first input parameter and d as the sixth,

except that the gamma shape and offset parameters d and p are

allowed to vary nonlinearly as a function of x. An implementation

that uses the nonlinearity parameters described here is available

from the authors (see author note).

Note that the magnitude parameter (m) asymptotes at 0 for large

x. Therefore, our approximations predict a zero response magnitude

for long blocks of stimulation. Because of this, and because the

frequency of neural responses is unknown for blocks of continuous

stimulation, these equations may not be appropriate for modeling

long block designs (e.g., N30 consecutive stimuli).

Modified linear compared with linear and balloon model

predictors

Fig. 5A shows the predicted responses for three models: the

linear (green line), balloon (blue line), and modified linear (using

Eqs. (2)–(4); red line). The critical difference between the linear

and other models is the relative predicted response magnitude of

short stimulus trains (e.g., one or two stimuli followed by rest)

compared with long trains (e.g., 10 or 11 stimuli). The linear model

predicts that the relative height of these will differ by a factor of

approximately 4.6. After adjusting for observed nonlinearities

using the equations (red line), the relative predicted height differs

by a factor of approximately 2.3. The balloon and modified linear

models agree closely, although the rise time for the balloon model

is somewhat faster.
eriment for the linear model (green), the modified linear model using our

predicted responses to series of 1, 2, 11, 10, 6, 5, 2, and 1 visual stimulus,

on series of different lengths. (B) Model fits to the group-averaged data

below the fits show the stimulation onsets. The linear model underfits the

t and long trains are not captured well by the linear model. Both adjusted

op left) and model fits (remaining panels) averaged over all stimuli of a

gend. The GLM predictors (top right) underestimate the response to short
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When the model is adjusted for nonlinearities of the form

described in Eqs. (2)–(4), the adjusted linear model provides

significantly better fits to the time series data than the linear model.
Fig. 5B shows the fits of linear (green line), balloon (blue line), and

modified linear (red line) models to the average data across

participants (black line) for a randomly selected segment of the
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data. Fig. 5C shows the average data across regions (top left panel)

and the fits for the GLM (top right), modified GLM (bottom left),

and balloon model (bottom right), averaged over series of each

length. The figures illustrate that the ordinary GLM fit underfits the

response to short series (one- and two-stimulus sequences). We

quantified the fits by obtaining the percentage of variance

explained (R2) in fitting both models to the time series data of

each participant in each region and taking as a quality measure the

R2 for the adjusted model divided by the R2 for the linear model.
Fig. 6. (A) Proportional improvement in explained variance (R2, y-axis) by

the modified linear model compared to the ordinary linear model for each

region of interest (x-axis). Dots indicate relative explained variance for one

participant in one region, with a value of 1 signifying no advantage to either

model, and positive values signifying a better fit to the adjusted model. The

adjusted model fit better in 40 out of 44 regions tested. (B) Proportional

improvement in explained variance by the balloon model relative to the

linear model. The improvement is similar to that in A.
Ratio values over 1 indicate a better fit for the adjusted model. The

data are shown in Fig. 6A, which shows that the adjusted model

fits better in 41 out of 44 ROIs tested. Benefits in motor cortex

were more variable than in visual cortex, but on average, the

adjusted model provided approximately a 125% improvement in

R2 over the linear model. The balloon model provided similar fits,

with a 121% improvement in R2 over the linear model (Fig. 6B).
Discussion

Our results show significant nonlinearities in BOLD response

as a function of stimulus history. Some of the early analyses of

event-related fMRI found some evidence for similar effects but

chose to focus on the rough linearity of the response rather than

deviations from linearity. For example, Dale and Buckner (1997)

found a slightly smaller, later-onset, and less-dispersed response to

a second stimulus that occurred 2 s after an initial one but

concluded that the responses were roughly linear. Later, Miezin et

al. (2000) reported 10% nonlinear reductions in response magni-

tude after a longer 5-s delay. Our findings that the response is

reduced by nearly 50% if preceded by a stimulus 1 s earlier

complement these findings and underscore the importance of

avoiding potential confounds created by differences in nonlinearity

across experimental conditions.

This experiment was motivated by interest in predicting signal

nonlinearities for the purpose of avoiding such confounds and

improving model fits in psychological experiments. In this task, it

is necessary to walk a fine line between predictive power and

explanatory power. This classic tradeoff in statistics poses a thorny

problem for researchers of all disciplines. While the Volterra series

makes accurate overall predictions of the response, multicollinear-

ity between predictors makes the portion of the signal attributable

to parameters of psychological interest (such as the signal related to

memory encoding, or the difference between shifting and static

attention) difficult to estimate reliably.

Our approach was to perform a separate experiment with the

goal of obtaining fixed parameter estimates for one type of

nonlinearity, nonlinearity induced by stimulation history, for use in

the design and analysis of future studies. The strategy consists of

building the regressors in the general linear model as nonlinear

functions of the stimulus response instead of assuming linearity

and performing a convolution of a canonical response function

with a stimulus train. In our method, the individual responses are

scaled relative to their preceding responses by a canonical,

empirically determined set of equations (Eqs. (2)–(4)).

Avoiding false-positives in event-related and blocked designs

One use of these equations is when investigators aim to

accurately model responses within individual participants in a rapid

event-related design, as when assessing significance levels within

individual participants. For a group (i.e., random effects) analysis,

accurate modeling of nonlinearities is generally less important.

However, there are situations in which inaccurate modeling of

nonlinearities (i.e., using the linear model without adjustment) may

create biased estimates across participants, leading to false-

positives or false-negatives with respect to a true difference in

underlying responses across block or trial types. This problem can

occur when (1) blocks or epochs of different lengths are compared

without accounting for nonlinearities in the response as a function
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of stimulation length, or (2) when events are compared that differ

in their densities or frequencies of occurrence (if events can occur

closer than 2–3 s apart). The following is an example to illustrate a

problematic block design. Fig. 7 shows the simulated response to a

block design with unequal block durations without taking non-

linearity into account. The btrue data,Q shown in black, is based on

the canonical SPM HRF modified using our nonlinearity estimates

(Eqs. (2)–(4)). The blue lines are the linear model predictors. The

bneural responseQ underlying both conditions is exactly the same, a

unit response every 0.5 s, evenly distributed across both block

types. Because the blocks for two conditions to be compared (A

and B) are of unequal lengths (10 and 20 s), the predicted height

for the longer block is of greater magnitude than the shorter one.

When the linear model is fit to the data, it finds a difference in

bactivityQ between conditions A and B (panel 3), corresponding to

beta values of 0.30 and 0.25 for A and B. However, this difference

is not related to underlying neural activity in A vs. B but rather to

inaccuracies in the relative scaling of the two predictors in a model

that does not account for stimulation history effects.

This principle also extends to event-related (ER) designs that

compare different trial types. In a rapid ER design, events of

various types are presented in random or pseudo-random order, and

temporal stochasticity is often introduced into the design. These

properties produce designs that have groups of uneven numbers of

events closely spaced in time. If the trial types differ in their

density with respect to time, nonlinear saturation will also differ,

and the same neuronal activity to each trial type may translate into

different estimates of BOLD response magnitude. At best, the

residual error in the model fit will increase. At worst, if the event

spacing (and thus the magnitude of nonlinear interactions) differs

among event types, analysis may yield false-positive results.

Sources of nonlinearity and prediction of BOLD response

Nonlinearity in BOLD responses can come from a number of

sources. At the single neuron level, the firing in response to

stimulation varies over time and is usually not a linear or time-

invariant function of the stimulus intensity (e.g., Logothetis, 2003).

At short (within stimulus) or long (across minutes or days) time

delays, habituation and sensitization of neurons to particular

stimuli often occur (Kileny et al., 1980; Logothetis, 2002; Wilson

et al., 1984). From a psychological point of view, the response to a

stimulus can vary based on a number of adaptive mechanisms that

result in a nonlinear neuronal firing pattern, including the

development of a strategy, learning new information, and changes

in attention or alertness during the task (Raichle et al., 1994).

Even in the case of near-linear neuronal responses, the vascular

response is clearly nonlinear, an effect attributed to the viscoelastic

properties of the blood vessels. Several groups have contributedwith

theoretical models of nonlinearity based on auxiliary measurements

of blood flow, oxygen saturation, and other parameters (Buxton and

Frank, 1997; Buxton et al., 1998; Mandeville et al., 1999; Vazquez

and Noll, 1998). Perhaps the most popular model is the one

presented by Buxton et al. (1998), in which the response is

characterized as a function of the oxyhemoglobin quantity in the

vessels. The vessels’ elastic properties allow their diameter to

increase up to a point when there is blood flow surge, like the one

expected following neuronal activation, and slowly return to their

original size afterward. When two stimuli are presented close

together, the vessels’ diameter is still dilated close to it maximum

capacity by the time the second stimulus is presented, and thus the
response to the second stimulus is smaller and has a slightly different

shape. This effect was included in the estimation of the balloon

model parameters where it is directly related to the poststimulus

undershoot. However, the estimation routine did not predict a strong

poststimulus undershoot (Fig. 5). While the balloon model explains

some of the nonlinearity in the data (as shown in Fig. 5), it is also

evident that there remains residual nonlinearities not explained by

this venous volume effect and likely to represent nonlinearities at the

metabolic and/or neuronal level.

A simple model of canonical nonlinearity

Nonlinearity in BOLD responses can come from a number of

sources: neural, vascular, psychophysical, and psychological (e.g.,

Kileny et al., 1980; Logothetis, 2002, 2003; Raichle et al., 1994;

Wilson et al., 1984). Whatever the source of nonlinearities,

however, if the goal is accurate prediction of the BOLD response,

it is only necessary to measure the end product of nonlinear

physiological effects on the BOLD response itself. This consid-

eration has motivated the Volterra series formulation of Friston et

al. (1998, 2000), which dlinearizesT sequence effects into a

number of linear predictors, and produces very accurate model

fits to data, at the cost of statistical power of the overall model,

and in particular, the psychological parameters of interest.

Calculating nonlinear effects using our model is computationally

efficient, and they can be easily incorporated into the linear

modeling framework without using up additional degrees of

freedom in the model.

Limitations of the current study

Several studies have pointed out that nonlinear effects may differ

among brain regions (Birn et al., 2001; Huettel and McCarthy,

2001). We also found some such effects, with small but consistent

differences in nonlinear saturation between visual and motor

regions. Using an overall average estimate of nonlinear effects

prospectively, as we suggest here, is most meaningful if those

nonlinearities do not vary with brain region. We find that the overall

saturation effects occur in approximately the same form, and these

overall effects are several times larger than the saturation � region

interactions; thus, we suggest that using the canonical estimates for

nonlinear responses we propose may provide a reasonable first-

order approximation to estimating nonlinearities. However, the

model will provide a poorer fit to brain regions that exhibit

noncanonical saturation effects.

The situation is analogous to the difficulties posed by using a

canonical estimate of the HRF at all (e.g., Friston et al., 1995a),

although this has become common practice in many laboratories.

The shape of the hemodynamic response itself is not consistent

throughout the brain (Marrelec et al., 2003; Rajapakse et al., 1998),

but the canonical form provides a first-order approximation. We

provide a bcanonicalQ first-order estimate for nonlinear effects.

While nonlinearities surely differ to some degree across brain

regions, we hope to provide an average starting point that will

reasonably approximate nonlinear effects.

An alternative, or complementary, approach might be to add

predictors that represent stimulation history to the design matrix

and thus fit a parameter for magnitude � history effects in each

brain voxel (this is a simplification of the full Volterra approach).

The current estimates could complement this approach if they are

used as priors in a Baysian model estimation framework (e.g.,



Fig. 7. Simulation showing that artifactual differences between task conditions due to nonlinearities in the BOLD response may occur when comparing blocks of unequal lengths. This is true even when neural

activity is identical across conditions and when comparing across participants in a random effects analysis. (A) Simulated data (heavy black line) were created using nonlinear parameter estimates derived from the

experiment. Thus, the dtrueT response has nonlinearities of the form we report here. dNeuralT events, shown by vertical black lines at the bottom of the figure, occurred every 1 s for both conditions A and B. The

assumed hemodynamic response (HRF) to each event was the same for both conditions. The only difference was that condition A consisted of longer blocks (20 s) than condition B (10 s). Models with two

regressors (A and B) plus intercept were fit to the data. The beventQ model consisted of events (vertical black lines) convolved with the canonical SPM99 HRF for each condition. The bepochQ model consisted of 20

s (condition A) or 10 s (condition B) epochs convolved with the HRF in SPM99. Blue and red lines show overall model fits for both models. (B) Example noise vector. An autocorrelated noise time series with the

same variance as the signal (Cohen’s d = 1), comparable to signal–noise ratios from real experiments, was added to the simulated data. Beta weights were obtained for each condition and the process was repeated

for 1000 noise realizations. (C) Beta weights for conditions A and B for the event (left panel) and epoch (right panel) models. As the response to each event was the same for both conditions, beta weights are

expected to be the same as well. Estimates differ for the event model, but not the epoch model, indicating an artifactual result for the event model. Estimates are based on 1000 realizations, but error bars are

standard errors of the mean based on a sample of 10 participants, comparable to a typical experiment. Nonlinearities in the response caused a systematically smaller response for the 20-s block (condition A),

resulting in lower beta weights. (D) Repetition of the simulation with a true response (simulated data) consisting of a linear convolution of events spaced every 3 s, with 20 and 10 s blocks for conditions A and B,

respectively. Three seconds was chosen because little nonlinearity is expected to occur at this interval. If the true response is linear, the event model fits accurately, but the epoch model shows an artifactual

difference between conditions. Simulations with linear simulated data at 1 s, as in A, showed an even more pronounced effect.
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Friston and Penny, 2003; Penny et al., 2003; Smith et al., 2003;

Woolrich et al., 2004).

Another limitation of the study is that nonlinear effects were

estimated using an ISI of 1 s throughout the experiment, which is

suitable for fast ER designs with interstimulus intervals around this

length. For example, average response times are near 1 s for many

cognitive tasks. This poses a serious limitation, however, as we

cannot provide quantitative estimates of nonlinearity at other delay

times (e.g., 3–4 s typical of many event-related paradigms). The

problem can be approximately solved by assuming a linear or

exponential decrease in nonlinear saturation with increasing ISI, as

the response is known to be very near linear at ISIs of greater than

5 s (Miezin et al., 2000).
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