
2/3/22, 6:25 PM An Introduction to Neural Network Loss Functions

https://programmathically.com/an-introduction-to-neural-network-loss-functions/#:~:text=The loss function in a,all losses constitutes the cost. 1/6

An Introduction to Neural Network LossAn Introduction to Neural Network Loss

FunctionsFunctions

Posted by Seb On September 28, 2021 In Deep Learning, Machine Learning

Home » Machine Learning » Deep Learning » An Introduction to Neural Network Loss Functions

Sharing is caring

This post introduces the most common loss functions used in deep
learning.

The loss function in a neural network quantifies the difference betweenThe loss function in a neural network quantifies the difference between
the expected outcome and the outcome produced by the machinethe expected outcome and the outcome produced by the machine
learning model. From the loss function, we can derive the gradients whichlearning model. From the loss function, we can derive the gradients which
are used to update the weights. The average over all losses constitutesare used to update the weights. The average over all losses constitutes
the cost.the cost.

A machine learning model such as a neural network attempts to learn the
probability distribution underlying the given data observations. In
machine learning, we commonly use the statistical framework of
maximum likelihood estimation as a basis for model construction. This
basically means we try to find a set of parameters and a prior probability
distribution such as the normal distribution to construct the model that
represents the distribution over our data. If you are interested in learning
more, I suggest you check out my post on maximum likelihood
estimation.

Cross-Entropy based Loss FunctionsCross-Entropy based Loss Functions

Cross-entropy-based loss functions are commonly used in classification
scenarios. Cross entropy is a measure of the difference between two
probability distributions. In a machine learning setting using maximum
likelihood estimation, we want to calculate the difference between the
probability distribution produced by the data generating process (the
expected outcome) and the distribution represented by our model of that
process.

The resulting difference produced is called the loss. It increases
exponentially as the prediction diverges from the actual outcome.

Get new posts by email:Get new posts by email:

Enter your emailEnter your email

Subscribe

Further ResourcesFurther Resources

Here you find a comprehensive list
of resources to master machine
learning and data science.

TweetShare Share Save

Search...

ProgrammathicallyProgrammathically
A Blog on Building Machine Learning Solutions

Home Mathematics for Machine Learning » Machine Learning » Deep Learning Software Engineering » About »

https://programmathically.com/author/sebastian/
https://programmathically.com/category/machinelearning/deep-learning/
https://programmathically.com/category/machinelearning/
https://programmathically.com/
https://programmathically.com/category/machinelearning/
https://programmathically.com/category/machinelearning/deep-learning/
https://programmathically.com/maximum-likelihood-estimation/
https://programmathically.com/machine-learning/learning-resources-machine-learning/
https://twitter.com/intent/tweet?original_referer=https%3A%2F%2Fprogrammathically.com%2F&ref_src=twsrc%5Etfw%7Ctwcamp%5Ebuttonembed%7Ctwterm%5Eshare%7Ctwgr%5E&text=An%20Introduction%20to%20Neural%20Network%20Loss%20Functions&url=https%3A%2F%2Fprogrammathically.com%2Fan-introduction-to-neural-network-loss-functions%2F
https://www.facebook.com/sharer/sharer.php?kid_directed_site=0&sdk=joey&u=https%3A%2F%2Fprogrammathically.com%2Fan-introduction-to-neural-network-loss-functions%2F&display=popup&ref=plugin&src=share_button
https://programmathically.com/
https://programmathically.com/
https://programmathically.com/mathematics-for-machine-learning-and-data-science/
https://programmathically.com/machine-learning/
https://programmathically.com/deep-learning/
https://programmathically.com/software-design-development/
https://programmathically.com/about/

2/3/22, 6:25 PM An Introduction to Neural Network Loss Functions

https://programmathically.com/an-introduction-to-neural-network-loss-functions/#:~:text=The loss function in a,all losses constitutes the cost. 2/6

If the actual outcome is 1, the model should produce a probability
estimate that is as close as possible to 1 to reduce the loss as much as
possible.

If the actual outcome is 0, the model should produce a probability
estimate that is as close as possible to 0.

As you can see on the plot, the loss explodes exponentially, preventing
the model from reaching a prediction equal to 1 (absolute certainty in the
wrong value). Conversely, the closer the estimate gets to the actual
outcome, the more the returns diminish.

Cross entropy is also referred to as the negative log-likelihood.

Binary Cross-EntropyBinary Cross-Entropy

As the name implies, the binary cross-entropy is appropriate in binary
classification settings to get one of two potential outcomes. The loss is
calculated according to the following formula, where y represents the

2/3/22, 6:25 PM An Introduction to Neural Network Loss Functions

https://programmathically.com/an-introduction-to-neural-network-loss-functions/#:~:text=The loss function in a,all losses constitutes the cost. 3/6

expected outcome, and y hat represents the outcome produced by our
model.

To make this concrete, let’s go through an example.

Let’s say you are training a neural network to determine whether a picture
contains a cat. The outcome is either 1 (there is a cat) or 0 (there is no cat).
You have 2 pictures, the first two of which contain cats, while the last one
does not. The neural network is 80% confident that the first image
contains a cat.

If we plug the first estimate and the expected outcome into our cross-
entropy loss formula, we get the following:

The neural network is 10% confident that the second image contains a
cat. In other words, the neural network gives you a 90% probability that
the second image does not contain a cat.

If we plug the last estimate and expected outcome into the formula, we
get the following.

The function is designed so that either the first or the second term equals
zero. You attain the cost by calculating the average over the loss overall
examples.

The binary cross-entropy is appropriate in conjunction with activation
functions such as the logistic sigmoid that produce a probability relating
to a binary outcome.

Categorical Cross-EntropyCategorical Cross-Entropy

L = −(y ​ log(​ ​) +i ŷi (1 − y ​)log(1 −i ​ ​))ŷi

y = 1
​ =ŷ 0.8

L = −(1 log(0.8) + (1 − 1)log(1 − 0.8)) = 0.32

y = 0
​ =ŷ 0.1

L = −(0 log(0.1) + (1 − 0)log(1 − 0.1)) = 0.15

C = − ​ ​(y ​ log(​ ​) +
N

1

i=1

∑
N

i ŷi (1 − y ​)log(1 −i ​ ​))ŷi

2/3/22, 6:25 PM An Introduction to Neural Network Loss Functions

https://programmathically.com/an-introduction-to-neural-network-loss-functions/#:~:text=The loss function in a,all losses constitutes the cost. 4/6

The categorical cross-entropy is applied in multiclass classification
scenarios. In the formula for the binary cross-entropy, we multiply the
actual outcome with the logarithm of the outcome produced by the
model for each of the two classes and then sum them up. For categorical
cross-entropy, the same principle applies, but now we sum over more
than two classes. Given that M is the number of classes, the formula is as
follows.

Assume that we have a neural network that learns to classify pictures into
three classes: Whether they contain a rabbit, a cat, or a dog. To represent
each sample, your expected outcome y is a vector of three entries for each
class. The entry that corresponds to the outcome is 1, while all others are
zero. Let’s say the first image contains a dog.

The vector of predictions contains probabilities for each outcome that
need to sum to 1.

To calculate the loss for this particular image of a dog, we plug these
values into the formula.

For the cost function, we need to calculate the loss of all the individual
training examples.

The categorical cross-entropy is appropriate in combination with an
activation function such as the softmax that can produce several
probabilities for the number of classes that sum up to 1.

Sparse Categorical Cross-EntropySparse Categorical Cross-Entropy

L = ​y ​ log(​ ​)
j=1

∑
M

j ŷj

y = ​ ​ ​⎣
⎡1

0
0⎦
⎤

​ =ŷ ​ ​ ​⎣
⎡0.7

0.2
0.1⎦

⎤

L = 1 log(0.7) + 0 log(0.2) + 0 log(0.1) = 0.52

L = − ​ ​ ​y ​ log(​ ​)
N

1

i=1

∑
N

j=1

∑
M

ij ŷij

2/3/22, 6:25 PM An Introduction to Neural Network Loss Functions

https://programmathically.com/an-introduction-to-neural-network-loss-functions/#:~:text=The loss function in a,all losses constitutes the cost. 5/6

About AuthorAbout Author

SebSeb

In deep learning frameworks such as TensorFlow or Pytorch, you may
come across the option to choose sparse categorical cross-entropy when
training a neural network.

Sparse categorical cross-entropy has the same loss function as
categorical cross-entropy. The only difference is how you present the
expected output y. If your y’s are in the same format as above, where
every entry is expressed as a vector with 1 for the outcome and zeros
everywhere else, you use the categorical cross-entropy. This is known as
one-hot encoding.

If your y’s are encoded in an integer format, you would use sparse
categorical cross-entropy. In the example above, a dog could be
represented by 1, a cat by 2, and a rabbit by 3 in integer format.

Mean Squared ErrorMean Squared Error

Mean squared error is used in regression settings where your expected
and your predicted outcomes are real-number values.

The formula for the loss is fairly straightforward. It is just the squared
difference between the expected value and the predicted value.

Suppose you have a model that helps you predict the price of oil per
gallon. If the actual price of the house is $2.89 and the model predicts
$3.07, you can calculate the error.

The cost is again calculated as the average overall losses for the individual
examples.

Sharing is caring

Tweet

L = (y ​ −i ​ ​)ŷi
2

L = (2.89 − 3.07) =2 0.032

C = ​ ​(y ​ −
N

1

i=1

∑
N

i ​ ​)ŷi
2

Save

Share Share Save

https://twitter.com/intent/tweet?original_referer=https%3A%2F%2Fprogrammathically.com%2F&ref_src=twsrc%5Etfw%7Ctwcamp%5Ebuttonembed%7Ctwterm%5Eshare%7Ctwgr%5E&text=An%20Introduction%20to%20Neural%20Network%20Loss%20Functions&url=https%3A%2F%2Fprogrammathically.com%2Fan-introduction-to-neural-network-loss-functions%2F
https://www.facebook.com/sharer/sharer.php?kid_directed_site=0&sdk=joey&u=https%3A%2F%2Fprogrammathically.com%2Fan-introduction-to-neural-network-loss-functions%2F&display=popup&ref=plugin&src=share_button

2/3/22, 6:25 PM An Introduction to Neural Network Loss Functions

https://programmathically.com/an-introduction-to-neural-network-loss-functions/#:~:text=The loss function in a,all losses constitutes the cost. 6/6

Understanding BackpropagationUnderstanding Backpropagation

With Gradient DescentWith Gradient Descent

Types of Machine Learning: ATypes of Machine Learning: A

High-Level IntroductionHigh-Level Introduction
Deep Learning Architectures forDeep Learning Architectures for

Image Classification: LeNet vsImage Classification: LeNet vs

Alexnet vs VGGAlexnet vs VGG

Related PostsRelated Posts



Comments Community 🔒 Privacy Policy 1 Login

t Tweet f Share Sort by Best

LOG IN WITH OR SIGN UP WITH DISQUS

Name

Start the discussion…

?

Be the first to comment.

S✉ d S⚠

Programmathically Comment Policy

Found a mistake? Think something is unclear? Have
suggestions? Let me know in the comments. Keep it civil
and respectful

 Favorite

Theme by MyThemeShop. Back to Top ↑Programmathically Copyright © 2022.

Privacy Policy

Cookie Policy

Imprint

Contact

https://programmathically.com/understanding-backpropagation-with-gradient-descent/
https://programmathically.com/understanding-backpropagation-with-gradient-descent/
https://programmathically.com/types-of-machine-learning-a-high-level-introduction/
https://programmathically.com/types-of-machine-learning-a-high-level-introduction/
https://programmathically.com/deep-learning-architectures-for-image-classification-lenet-vs-alexnet-vs-vgg/
https://programmathically.com/deep-learning-architectures-for-image-classification-lenet-vs-alexnet-vs-vgg/
https://disqus.com/
https://disqus.com/home/forums/programmathically/
https://help.disqus.com/customer/portal/articles/466259-privacy-policy
https://disqus.com/home/inbox/
https://publishers.disqus.com/engage?utm_source=programmathically&utm_medium=Disqus-Footer
https://disqus.com/data-sharing-settings/
http://mythemeshop.com/
https://programmathically.com/
https://www.iubenda.com/privacy-policy/33520264
https://www.iubenda.com/privacy-policy/33520264/cookie-policy
https://programmathically.com/imprint/
https://programmathically.com/about/contact/

