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Artificial intelligence (AI) is the field devoted to building
artificial animals
(or at least artificial creatures that – in
suitable contexts – appear to be
animals) and, for
many, artificial persons (or at least artificial creatures that
– in suitable contexts – appear to be
persons).[1]
Such goals immediately
ensure that AI is a discipline of considerable
interest to many philosophers,
and this has been confirmed (e.g.) by
the energetic attempt, on the part of
numerous philosophers, to show
that these goals are in fact un/attainable.
On the constructive side,
many of the core formalisms and techniques used
in AI come out of, and
are indeed still much used and refined in,

philosophy: first-order
logic and its extensions; intensional logics suitable for the modeling
of doxastic attitudes
and deontic reasoning; inductive logic,
probability theory, and probabilistic reasoning; practical reasoning
and
planning, and so on. In light of this, some philosophers conduct
AI research and development as philosophy.

In the present entry, the history of AI is briefly recounted, proposed
definitions of the field are discussed, and an
overview of the field
is provided. In addition, both philosophical AI (AI pursued as and out
of philosophy) and
philosophy of AI are discussed, via
examples of both. The entry ends with some de rigueur
speculative
commentary regarding the future of AI.

1. The History of AI
2. What Exactly is AI?
3. Approaches to AI

3.1 The Intelligent Agent Continuum
3.2 Logic-Based AI: Some Surgical Points
3.3 Non-Logicist AI: A Summary
3.4 AI Beyond the Clash of Paradigms

4. The Explosive Growth of AI
4.1 Bloom in Machine Learning
4.2 The Resurgence of Neurocomputational Techniques
4.3 The Resurgence of Probabilistic Techniques

5. AI in the Wild
6. Moral AI
7. Philosophical AI
8. Philosophy of Artificial Intelligence

8.1 “Strong” versus “Weak” AI
8.2 The Chinese Room Argument Against “Strong AI”
8.3 The Gödelian Argument Against “Strong AI”
8.4 Additional Topics and Readings in Philosophy of AI

9. The Future
Bibliography
Academic Tools
Other Internet Resources

Online Courses on AI
Related Entries

https://plato.stanford.edu/index.html
https://plato.stanford.edu/index.html
https://plato.stanford.edu/entries/artificial-intelligence/notes.html#note-1


1/17/22, 7:45 AM Artificial Intelligence (Stanford Encyclopedia of Philosophy)

https://plato.stanford.edu/entries/artificial-intelligence/ 2/45

1. The History of AI
The field of artificial intelligence (AI) officially started in 1956,
launched by a small but now-famous
DARPA-
sponsored
summer conference at Dartmouth College, in Hanover, New Hampshire.
(The 50-year celebration of
this conference,
AI@50,
was held in July 2006 at Dartmouth, with five of the original
participants making it
back.[2]
What happened at this historic conference figures in the final
section of this entry.) Ten thinkers
attended, including John McCarthy
(who was working at Dartmouth in 1956), Claude Shannon, Marvin Minsky,
Arthur Samuel, Trenchard Moore (apparently the lone note-taker at the
original conference), Ray Solomonoff,
Oliver Selfridge, Allen Newell,
and Herbert Simon. From where we stand now, into the start of the new
millennium, the Dartmouth conference is memorable for many reasons,
including this pair: one, the term
‘artificial
intelligence’ was coined there (and has long been firmly
entrenched, despite being disliked by some of
the attendees, e.g.,
Moore); two, Newell and Simon revealed a program – Logic
Theorist (LT) – agreed by the
attendees (and, indeed, by nearly
all those who learned of and about it soon after the conference) to be
a
remarkable achievement. LT was capable of proving elementary
theorems in the propositional
calculus.[3][4]

Though the term ‘artificial intelligence’ made
its advent at the 1956 conference, certainly the field of AI,
operationally defined (defined, i.e., as a field constituted by
practitioners who think and act in certain ways), was
in operation
before 1956. For example, in a famous Mind paper of 1950,
Alan Turing argues that the question
“Can a machine
think?” (and here Turing is talking about standard computing
machines: machines capable of
computing functions from the natural
numbers (or pairs, triples, … thereof) to the natural numbers
that a Turing
machine or equivalent can handle) should be replaced
with the question “Can a machine be linguistically
indistinguishable from a human?.” Specifically, he proposes a
test, the
“Turing Test”
(TT) as it’s now known. In
the TT, a woman and a computer are
sequestered in sealed rooms, and a human judge, in the dark as to
which of
the two rooms contains which contestant, asks questions by
email (actually, by teletype, to use the original term)
of the
two. If, on the strength of returned answers, the judge can do no
better than 50/50 when delivering a
verdict as to which room houses
which player, we say that the computer in question has passed
the TT. Passing
in this sense operationalizes linguistic
indistinguishability. Later, we shall discuss the role that TT has
played,
and indeed continues to play, in attempts to define AI. At the
moment, though, the point is that in his paper,
Turing explicitly lays
down the call for building machines that would provide an existence
proof of an
affirmative answer to his question. The call even includes
a suggestion for how such construction should
proceed. (He suggests
that “child machines” be built, and that these machines
could then gradually grow up on
their own to learn to communicate in
natural language at the level of adult humans. This suggestion has
arguably
been followed by Rodney Brooks and the philosopher Daniel
Dennett (1994) in the Cog Project. In addition, the
Spielberg/Kubrick
movie A.I. is at least in part a cinematic exploration of
Turing’s
suggestion.[5])
The TT
continues to be at the heart of AI and discussions of its
foundations, as confirmed by the appearance of (Moor
2003). In fact,
the TT continues to be used to define the field, as in
Nilsson’s (1998) position, expressed in his
textbook for the
field, that AI simply is the field devoted to building an artifact
able to negotiate this test. Energy
supplied by the dream of
engineering a computer that can pass TT, or by controversy surrounding
claims that it
has already been passed, is if anything
stronger than ever, and the reader has only to do an internet search
via the
string

turing test passed

to find up-to-the-minute attempts at reaching this dream, and attempts
(sometimes made by philosophers) to
debunk claims that some such
attempt has succeeded.

Returning to the issue of the historical record, even if one bolsters
the claim that AI started at the 1956
conference by adding the proviso
that ‘artificial intelligence’ refers to a nuts-and-bolts
engineering pursuit (in
which case Turing’s
philosophical discussion, despite calls for a child machine,
wouldn’t exactly count as AI per
se), one must confront the fact
that Turing, and indeed many predecessors, did attempt to build
intelligent
artifacts. In Turing’s case, such building was
surprisingly well-understood before the advent of programmable
computers: Turing wrote a program for playing chess before there were
computers to run such programs on, by
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slavishly following the code
himself. He did this well before 1950, and long before Newell (1973)
gave thought
in print to the possibility of a sustained, serious
attempt at building a good chess-playing
computer.[6]

From the perspective of philosophy, which views the systematic
investigation of mechanical intelligence as
meaningful and productive
separate from the specific logicist formalisms (e.g., first-order
logic) and problems
(e.g., the Entscheidungsproblem) that gave
birth to computer science, neither the 1956 conference, nor
Turing’s
Mind paper, come close to marking the start of
AI. This is easy enough to see. For example, Descartes proposed
TT
(not the TT by name, of course) long before Turing was
born.[7]
Here’s the relevant passage:

If there were machines which bore a resemblance to our body and
imitated our actions as far as it
was morally possible to do so, we
should always have two very certain tests by which to recognise
that,
for all that, they were not real men. The first is, that they could
never use speech or other signs
as we do when placing our thoughts on
record for the benefit of others. For we can easily understand
a
machine’s being constituted so that it can utter words, and even
emit some responses to action on it
of a corporeal kind, which brings
about a change in its organs; for instance, if it is touched in a
particular part it may ask what we wish to say to it; if in another
part it may exclaim that it is being
hurt, and so on. But it never
happens that it arranges its speech in various ways, in order to reply
appropriately to everything that may be said in its presence, as even
the lowest type of man can do.
And the second difference is, that
although machines can perform certain things as well as or
perhaps
better than any of us can do, they infallibly fall short in others, by
which means we may
discover that they did not act from knowledge, but
only for the disposition of their organs. For while
reason is a
universal instrument which can serve for all contingencies, these
organs have need of
some special adaptation for every particular
action. From this it follows that it is morally impossible
that there
should be sufficient diversity in any machine to allow it to act in
all the events of life in
the same way as our reason causes us to act.
(Descartes 1637, p. 116)

At the moment, Descartes is certainly carrying the
day.[8]
Turing predicted that his test would be passed by 2000,
but the
fireworks across the globe at the start of the new millennium have
long since died down, and the most
articulate of computers still
can’t meaningfully debate a sharp toddler. Moreover, while in
certain focussed areas
machines out-perform minds (IBM’s famous
Deep Blue prevailed in chess over Gary Kasparov, e.g.; and more
recently, AI systems have prevailed in other games, e.g.
Jeopardy! and Go, about which more will momentarily
be said),
minds have a (Cartesian) capacity for cultivating their expertise in
virtually any sphere. (If it were
announced to Deep Blue, or
any current successor, that chess was no longer to be the game of
choice, but rather
a heretofore unplayed variant of chess, the machine
would be trounced by human children of average
intelligence having no
chess expertise.) AI simply hasn’t managed to create
general intelligence; it hasn’t even
managed to produce
an artifact indicating that eventually it will create such a
thing.

But what about IBM Watson’s famous nail-biting victory in the
Jeopardy! game-show
contest?[9]
That certainly
seems to be a machine triumph over humans on their
“home field,” since Jeopardy! delivers a
human-level
linguistic challenge ranging across many domains. Indeed,
among many AI cognoscenti, Watson’s success is
considered to be
much more impressive than Deep Blue’s, for numerous reasons. One
reason is that while chess
is generally considered to be
well-understood from the formal-computational perspective (after all,
it’s well-
known that there exists a perfect strategy for playing
chess), in open-domain question-answering (QA), as in
any
significant natural-language processing task, there is no consensus as
to what problem, formally speaking,
one is trying to solve. Briefly,
question-answering (QA) is what the reader would think it is: one asks
a question
of a machine, and gets an answer, where the answer has to
be produced via some “significant” computational
process.
(See Strzalkowski & Harabagiu (2006) for an overview of what QA,
historically, has been as a field.) A
bit more precisely, there is no
agreement as to what underlying function, formally speaking,
question-answering
capability computes. This lack of agreement stems
quite naturally from the fact that there is of course no
consensus as
to what natural languages are, formally
speaking.[10]
Despite this murkiness, and in the face of an
almost universal belief
that open-domain question-answering would remain unsolved for a decade
or more,
Watson decisively beat the two top human Jeopardy!
champions on the planet. During the contest, Watson had to
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answer
questions that required not only command of simple factoids
(Question1), but also of some amount of
rudimentary
reasoning (in the form of temporal reasoning) and commonsense
(Question2):

Question1: The only two consecutive U.S. presidents
with the same first name.

Question2: In May 1898, Portugal celebrated the
400th anniversary of this explorer’s arrival in India.

While Watson is demonstrably better than humans in
Jeopardy!-style quizzing (a new human Jeopardy! master
could arrive on the scene, but as for chess, AI now assumes that a
second round of IBM-level investment would
vanquish the new human
opponent), this approach does not work for the kind of NLP challenge
that Descartes
described; that is, Watson can’t converse on the
fly. After all, some questions don’t hinge on sophisticated
information retrieval and machine learning over pre-existing data, but
rather on intricate reasoning right on the
spot. Such questions may
for instance involve anaphora resolution, which require even deeper
degrees of
commonsensical understanding of time, space, history, folk
psychology, and so on. Levesque (2013) has
catalogued some alarmingly
simple questions which fall in this category. (Marcus, 2013, gives an
account of
Levesque’s challenges that is accessible to a wider
audience.) The other class of question-answering tasks on
which Watson
fails can be characterized as dynamic question-answering. These
are questions for which answers
may not be recorded in textual form
anywhere at the time of questioning, or for which answers are
dependent on
factors that change with time. Two questions that fall in
this category are given below (Govindarajulu et al.
2013):

Question3: If I have 4 foos and 5 bars, and if foos
are not the same as bars, how many foos will I have if I get
3 bazes
which just happen to be foos?

Question4: What was IBM’s Sharpe ratio in the
last 60 days of trading?

Closely following Watson’s victory, in March 2016,
Google DeepMind’s AlphaGo
defeated one of Go’s top-
ranked players, Lee Seedol, in four
out of five matches. This was considered a landmark achievement within
AI,
as it was widely believed in the AI community that computer
victory in Go was at least a few decades away,
partly due to the
enormous number of valid sequences of moves in Go compared to that in
Chess.[11]
While this
is a remarkable achievement, it should be noted that,
despite breathless coverage in the popular
press,[12]
AlphaGo, while indisputably a great Go player, is just that. For
example, neither AlphaGo nor Watson can
understand the rules of Go
written in plain-and-simple English and produce a computer program
that can play
the game. It’s interesting that there is one
endeavor in AI that tackles a narrow version of this very problem: In
general game playing, a machine is given a description of a
brand new game just before it has to play the game
(Genesereth et al.
2005). However, the description in question is expressed in a formal
language, and the
machine has to manage to play the game from this
description. Note that this is still far from understanding even
a
simple description of a game in English well enough to play it.

But what if we consider the history of AI not from the perspective of
philosophy, but rather from the perspective
of the field with which,
today, it is most closely connected? The reference here is to computer
science. From this
perspective, does AI run back to well before
Turing? Interestingly enough, the results are the same: we find that
AI runs deep into the past, and has always had philosophy in its
veins. This is true for the simple reason that
computer science grew
out of logic and probability
theory,[13]
which in turn grew out of (and is still intertwined
with) philosophy.
Computer science, today, is shot through and through with logic; the
two fields cannot be
separated. This phenomenon has become an object
of study unto itself (Halpern et al. 2001). The situation is no
different when we are talking not about traditional logic, but rather
about probabilistic formalisms, also a
significant component of
modern-day AI: These formalisms also grew out of philosophy, as nicely
chronicled, in
part, by Glymour (1992). For example, in the one mind
of Pascal was born a method of rigorously calculating
probabilities,
conditional probability (which plays a particularly large role in AI,
currently), and such fertile
philosophico-probabilistic arguments as
Pascal’s wager,
according to which it is irrational not to become a
Christian.
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That modern-day AI has its roots in philosophy, and in fact that these
historical roots are temporally deeper than
even Descartes’
distant day, can be seen by looking to the clever, revealing cover of
the second edition (the third
edition is the current one) of the
comprehensive textbook
Artificial Intelligence: A Modern Approach
(known in
the AI community as simply AIMA2e for Russell &
Norvig, 2002).

Cover of AIMA2e (Russell & Norvig 2002)

What you see there is an eclectic collection of memorabilia that might
be on and around the desk of some
imaginary AI researcher. For
example, if you look carefully, you will specifically see: a picture
of Turing, a view
of Big Ben through a window (perhaps R&N are
aware of the fact that Turing famously held at one point that a
physical machine with the power of a universal Turing machine is
physically impossible: he quipped that it
would have to be the size of
Big Ben), a planning algorithm described in Aristotle’s De
Motu Animalium,
Frege’s
fascinating notation for first-order logic,
a glimpse of Lewis Carroll’s (1958) pictorial representation of
syllogistic reasoning, Ramon Lull’s concept-generating wheel
from his 13th-century Ars Magna, and a number of
other pregnant items (including, in a clever, recursive, and
bordering-on-self-congratulatory touch, a copy of
AIMA itself).
Though there is insufficient space here to make all the historical
connections, we can safely infer
from the appearance of these items
(and here we of course refer to the ancient ones: Aristotle conceived
of
planning as information-processing over two-and-a-half millennia
back; and in addition, as Glymour (1992)
notes, Artistotle can also be
credited with devising the first knowledge-bases and ontologies, two
types of
representation schemes that have long been central to AI)
that AI is indeed very, very old. Even those who insist
that AI is at
least in part an artifact-building enterprise must concede that, in
light of these objects, AI is ancient,
for it isn’t just
theorizing from the perspective that intelligence is at bottom
computational that runs back into the
remote past of human history:
Lull’s wheel, for example, marks an attempt to capture
intelligence not only in
computation, but in a physical artifact that
embodies that
computation.[14]

AIMA has now reached its the third edition, and those interested in
the history of AI, and for that matter the
history of philosophy of
mind, will not be disappointed by examination of the cover of the
third installment (the
cover of the second edition is almost exactly
like the first edition). (All the elements of the cover, separately
listed and annotated, can be found
online.)
One significant addition to the cover of the third edition is a
drawing
of Thomas Bayes; his appearance reflects the recent rise in
the popularity of probabilistic techniques in AI,
which we discuss
later.

One final point about the history of AI seems worth making.

It is generally assumed that the birth of modern-day AI in the 1950s
came in large part because of and through
the advent of the modern
high-speed digital computer. This assumption accords with
common-sense. After all,
AI (and, for that matter, to some degree its
cousin, cognitive science, particularly computational cognitive
modeling, the sub-field of cognitive science devoted to producing
computational simulations of human
cognition) is aimed at implementing
intelligence in a computer, and it stands to reason that such a goal
would be
inseparably linked with the advent of such devices. However,
this is only part of the story: the part that reaches
back but to
Turing and others (e.g., von Neuman) responsible for the first
electronic computers. The other part is
that, as already mentioned, AI
has a particularly strong tie, historically speaking, to reasoning
(logic-based and,
in the need to deal with uncertainty,
inductive/probabilistic reasoning). In this story, nicely told by
Glymour
(1992), a search for an answer to the question “What is
a proof?” eventually led to an answer based on Frege’s
version of first-order logic (FOL): a (finitary) mathematical proof
consists in a series of step-by-step inferences
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from one formula of
first-order logic to the next. The obvious extension of this answer
(and it isn’t a complete
answer, given that lots of classical
mathematics, despite conventional wisdom, clearly can’t be
expressed in
FOL; even the Peano Axioms, to be expressed as a finite
set of formulae, require SOL) is to say that not only
mathematical thinking, but thinking, period, can be expressed in FOL.
(This extension was entertained by many
logicians long before the
start of information-processing psychology and cognitive science
– a fact some
cognitive psychologists and cognitive scientists
often seem to forget.) Today, logic-based AI is only part of
AI,
but the point is that this part still lives (with help from logics
much more powerful, but much more complicated,
than FOL), and it can
be traced all the way back to Aristotle’s theory of the
syllogism.[15]
In the case of
uncertain reasoning, the question isn’t
“What is a proof?”, but rather questions such as
“What is it rational to
believe, in light of certain
observations and probabilities?” This is a question posed and
tackled long before the
arrival of digital computers.

2. What Exactly is AI?
So far we have been proceeding as if we have a firm and precise grasp
of the nature of AI. But what exactly is
AI? Philosophers
arguably know better than anyone that precisely defining a particular
discipline to the
satisfaction of all relevant parties (including
those working in the discipline itself) can be acutely challenging.
Philosophers of science certainly have proposed credible accounts of
what constitutes at least the general shape
and texture of a given
field of science and/or engineering, but what exactly is the
agreed-upon definition of
physics? What about biology? What, for that
matter, is philosophy, exactly? These are remarkably difficult,
maybe
even eternally unanswerable, questions, especially if the target is a
consensus definition. Perhaps the most
prudent course we can
manage here under obvious space constraints is to present in
encapsulated form some
proposed definitions of AI. We do
include a glimpse of recent attempts to define AI in detailed,
rigorous fashion
(and we suspect that such attempts will be of
interest to philosophers of science, and those interested in this
sub-
area of philosophy).

Russell and Norvig (1995, 2002, 2009), in their aforementioned
AIMA text, provide a set of possible answers to
the “What
is AI?” question that has considerable currency in the field
itself. These answers all assume that AI
should be defined in terms of
its goals: a candidate definition thus has the form “AI is the
field that aims at
building …” The answers all fall under
a quartet of types placed along two dimensions. One dimension is
whether the goal is to match human performance, or, instead, ideal
rationality. The other dimension is whether
the goal is to build
systems that reason/think, or rather systems that act. The situation
is summed up in this table:

Human-Based Ideal Rationality

Reasoning-Based: Systems that think like humans. Systems that think rationally.

Behavior-Based: Systems that act like humans. Systems that act rationally.

Four Possible Goals for AI According to AIMA

Please note that this quartet of possibilities does reflect (at least
a significant portion of) the relevant literature.
For example,
philosopher John Haugeland (1985) falls into the Human/Reasoning
quadrant when he says that AI
is “The exciting new effort to
make computers think … machines with minds, in the
full and literal sense.” (By
far, this is the quadrant that most
popular narratives affirm and explore. The recent
Westworld
TV series is a
powerful case in point.) Luger and Stubblefield (1993)
seem to fall into the Ideal/Act quadrant when they write:
“The
branch of computer science that is concerned with the automation of
intelligent behavior.” The Human/Act
position is occupied most
prominently by Turing, whose test is passed only by those systems able
to act
sufficiently like a human. The “thinking
rationally” position is defended (e.g.) by Winston (1992). While
it might
not be entirely uncontroversial to assert that the four bins
given here are exhaustive, such an assertion appears to
be quite
plausible, even when the literature up to the present moment is
canvassed.
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It’s important to know that the contrast between the focus on
systems that think/reason versus systems that act,
while found, as we
have seen, at the heart of the AIMA texts, and at the heart of
AI itself, should not be
interpreted as implying that AI researchers
view their work as falling all and only within one of these two
compartments. Researchers who focus more or less exclusively on
knowledge representation and reasoning, are
also quite prepared to
acknowledge that they are working on (what they take to be) a central
component or
capability within any one of a family of larger systems
spanning the reason/act distinction. The clearest case may
come from
the work on planning – an AI area traditionally making central
use of representation and reasoning.
For good or ill, much of this
research is done in abstraction (in vitro, as opposed to in vivo), but
the researchers
involved certainly intend or at least hope that the
results of their work can be embedded into systems that
actually do
things, such as, for example, execute the plans.

What about Russell and Norvig themselves? What is their answer to the
What is AI? question? They are firmly
in the the “acting
rationally” camp. In fact, it’s safe to say both that they
are the chief proponents of this answer,
and that they have been
remarkably successful evangelists. Their extremely influential
AIMA series can be
viewed as a book-length defense and
specification of the Ideal/Act category. We will look a bit later at
how
Russell and Norvig lay out all of AI in terms of intelligent
agents, which are systems that act in accordance with
various
ideal standards for rationality. But first let’s look a bit
closer at the view of intelligence underlying the
AIMA text. We
can do so by turning to Russell (1997). Here Russell recasts the
“What is AI?” question as the
question “What is
intelligence?” (presumably under the assumption that we have a
good grasp of what an artifact
is), and then he identifies
intelligence with rationality. More specifically, Russell sees
AI as the field devoted to
building intelligent agents, which
are functions taking as input tuples of percepts from the external
environment,
and producing behavior (actions) on the basis of these
percepts. Russell’s overall picture is this one:

The Basic Picture Underlying Russell’s Account of
Intelligence/Rationality

Let’s unpack this diagram a bit, and take a look, first, at the
account of perfect rationality that can be derived
from it. The
behavior of the agent in the environment  (from a class 
of environments) produces a sequence of
states or snapshots of that
environment. A performance measure  evaluates this sequence;
notice the box
labeled “Performance Measure” in the above
figure. We let  denote the expected utility
according to 
of the agent function  operating on
 .[16]
Now we identify a perfectly rational agent with the agent function:

According to the above equation, a perfectly rational agent can be
taken to be the function  which produces
the maximum
expected utility in the environment under consideration. Of course, as
Russell points out, it’s

E E
U

V(f ,E,U) U

f E

= V(f ,E,U)fopt arg max
f

(1)

fopt
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usually not possible to actually build
perfectly rational agents. For example, though it’s easy enough
to specify
an algorithm for playing invincible chess, it’s not
feasible to implement this algorithm. What traditionally
happens in AI
is that programs that are – to use Russell’s apt
terminology – calculatively rational are
constructed
instead: these are programs that, if executed infinitely fast,
would result in perfectly rational behavior.
In the case of chess,
this would mean that we strive to write a program that runs an
algorithm capable, in
principle, of finding a flawless move, but we
add features that truncate the search for this move in order to play
within intervals of digestible duration.

Russell himself champions a new brand of intelligence/rationality for
AI; he calls this brand bounded
optimality. To understand
Russell’s view, first we follow him in introducing a
distinction: We say that agents
have two components: a program, and a
machine upon which the program runs. We write  to
denote
the agent function implemented by program  running on
machine . Now, let  denote the set of all
programs  that can run on machine . The bounded
optimal program  then is:

You can understand this equation in terms of any of the mathematical
idealizations for standard computation. For
example, machines can be
identified with Turing machines minus instructions (i.e., TMs are here
viewed
architecturally only: as having tapes divided into squares upon
which symbols can be written, read/write heads
capable of moving up
and down the tape to write and erase, and control units which are in
one of a finite number
of states at any time), and programs can be
identified with instructions in the Turing-machine model (telling the
machine to write and erase symbols, depending upon what state the
machine is in). So, if you are told that you
must
“program” within the constraints of a 22-state Turing
machine, you could search for the “best” program
given
those constraints. In other words, you could strive to find the
optimal program within the bounds of the 22-
state architecture.
Russell’s (1997) view is thus that AI is the field devoted to
creating optimal programs for
intelligent agents, under time and space
constraints on the machines implementing these
programs.[17]

The reader must have noticed that in the equation for 
we have not elaborated on  and  and how
equation
  might be used to construct an agent if the class of
environments  is quite general, or if the true
environment
  is simply unknown. Depending on the task for which one is
constructing an artificial agent,  and

 would vary. The
mathematical form of the environment  and the utility function
  would vary wildly from,
say, chess to Jeopardy!. Of
course, if we were to design a globally intelligent agent, and not
just a chess-playing
agent, we could get away with having just one
pair of  and . What would  look like if we were
building a
generally intelligent agent and not just an agent that is
good at a single task?  would be a model of not just a
single
game or a task, but the entire physical-social-virtual universe
consisting of many games, tasks, situations,
problems, etc. This
project is (at least currently) hopelessly difficult as, obviously, we
are nowhere near to having
such a comprehensive theory-of-everything
model. For further discussion of a theoretical architecture put
forward for this problem, see the
Supplement on the AIXI architecture.

It should be mentioned that there is a different, much more
straightforward answer to the “What is AI?” question.
This
answer, which goes back to the days of the original Dartmouth
conference, was expressed by, among others,
Newell (1973), one of the
grandfathers of modern-day AI (recall that he attended the 1956
conference); it is:

AI is the field devoted to building artifacts that are intelligent,
where ‘intelligent’ is operationalized
through
intelligence tests (such as the Wechsler Adult Intelligence Scale),
and other tests of mental
ability (including, e.g., tests of
mechanical ability, creativity, and so on).

The above definition can be seen as fully specifying a concrete
version of Russell and Norvig’s four possible
goals. Though few
are aware of this now, this answer was taken quite seriously for a
while, and in fact underlied
one of the most famous programs in the
history of AI: the ANALOGY program of Evans (1968), which solved
geometric analogy problems of a type seen in many intelligence tests.
An attempt to rigorously define this
forgotten form of AI (as what
they dub Psychometric AI), and to resurrect it from the days of
Newell and
Evans, is provided by Bringsjord and Schimanski (2003) [see
also e.g. (Bringsjord 2011)]. A sizable private

Agent(P,M)

P M (M)
P M Popt,M

= V(Agent(P,M),E,U)Popt,M arg max
P∈(M)

Popt,M E U

(1) E
E E

U E U

E U E
E
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investment has been
made in the ongoing attempt, now known as
Project Aristo,
to build a “digital Aristotle”, in
the form of a machine
able to excel on standardized tests such at the AP exams tackled by US
high school
students (Friedland et al. 2004). (Vibrant work in this
direction continues today at the
Allen Institute for
Artificial Intelligence.)[18]
In addition, researchers at Northwestern have forged a connection
between AI and
tests of mechanical ability (Klenk et al. 2005).

In the end, as is the case with any discipline, to really know
precisely what that discipline is requires you to, at
least to some
degree, dive in and do, or at least dive in and read. Two decades ago
such a dive was quite
manageable. Today, because the content that has
come to constitute AI has mushroomed, the dive (or at least the
swim
after it) is a bit more demanding.

3. Approaches to AI
There are a number of ways of “carving up” AI. By far the
most prudent and productive way to summarize the
field is to turn yet
again to the AIMA text given its comprehensive overview of the
field.

3.1 The Intelligent Agent Continuum

As Russell and Norvig (2009) tell us in the Preface of AIMA:

The main unifying theme is the idea of an intelligent agent. We define
AI as the study of agents that
receive percepts from the environment
and perform actions. Each such agent implements a function
that maps
percept sequences to actions, and we cover different ways to represent
these functions…
(Russell & Norvig 2009, vii)

The basic picture is thus summed up in this figure:

Impressionistic Overview of an Intelligent Agent

The content of AIMA derives, essentially, from fleshing out
this picture; that is, the above figure corresponds to
the different
ways of representing the overall function that intelligent agents
implement. And there is a
progression from the least powerful agents
up to the more powerful ones. The following figure gives a high-level
view of a simple kind of agent discussed early in the book. (Though
simple, this sort of agent corresponds to the
architecture of
representation-free agents designed and implemented by Rodney Brooks,
1991.)

http://allenai.org/aristo/
http://allenai.org/
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A Simple Reflex Agent

As the book progresses, agents get increasingly sophisticated, and the
implementation of the function they
represent thus draws from more and
more of what AI can currently muster. The following figure gives an
overview of an agent that is a bit smarter than the simple reflex
agent. This smarter agent has the ability to
internally model the
outside world, and is therefore not simply at the mercy of what can at
the moment be
directly sensed.

A More Sophisticated Reflex Agent

There are seven parts to AIMA. As the reader passes through
these parts, she is introduced to agents that take on
the powers
discussed in each part. Part I is an introduction to the agent-based
view. Part II is concerned with
giving an intelligent agent the
capacity to think ahead a few steps in clearly defined environments.
Examples
here include agents able to successfully play games of
perfect information, such as chess. Part III deals with
agents that
have declarative knowledge and can reason in ways that will be quite
familiar to most philosophers
and logicians (e.g., knowledge-based
agents deduce what actions should be taken to secure their goals).
Part IV
of the book outfits agents with the power to handle
uncertainty by reasoning in probabilistic
fashion.[19]
In Part
V, agents are given a capacity to learn. The following figure
shows the overall structure of a learning agent.
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A Learning Agent

The final set of powers agents are given allow them to communicate.
These powers are covered in Part VI.

Philosophers who patiently travel the entire progression of
increasingly smart agents will no doubt ask, when
reaching the end of
Part VII, if anything is missing. Are we given enough, in general, to
build an artificial
person, or is there enough only to build a mere
animal? This question is implicit in the following from Charniak
and
McDermott (1985):

The ultimate goal of AI (which we are very far from achieving) is to
build a person, or, more
humbly, an animal. (Charniak & McDermott
1985, 7)

To their credit, Russell & Norvig, in AIMA’s Chapter
27, “AI: Present and Future,” consider this question, at
least to some
degree.[]
They do so by considering some challenges to AI that have hitherto
not been met. One of
these challenges is described by R&N as
follows:

[M]achine learning has made very little progress on the important
problem of constructing new
representations at levels of abstraction
higher than the input vocabulary. In computer vision, for
example,
learning complex concepts such as Classroom and Cafeteria would be
made unnecessarily
difficult if the agent were forced to work from
pixels as the input representation; instead, the agent
needs to be
able to form intermediate concepts first, such as Desk and Tray,
without explicit human
supervision. Similar concepts apply to learning
behavior: HavingACupOfTea is a very important
high-level step
in many plans, but how does it get into an action library that
initially contains much
simpler actions such as RaiseArm and Swallow?
Perhaps this will incorporate deep belief networks
–
Bayesian networks that have multiple layers of hidden variables, as in
the work of Hinton et al.
(2006), Hawkins and Blakeslee (2004),
and Bengio and LeCun (2007). … Unless we understand
such
issues, we are faced with the daunting task of constructing large
commonsense knowledge
bases by hand, and approach that has not fared
well to date. (Russell & Norvig 2009, Ch. 27.1)

While there has seen some advances in addressing this challenge (in
the form of deep learning or representation
learning),
this specific challenge is actually merely a foothill before a range
of dizzyingly high mountains that AI
must eventually somehow manage to
climb. One of those mountains, put simply, is
reading.[21]
Despite the fact
that, as noted, Part V of AIMA is devoted to
machine learning, AI, as it stands, offers next to nothing in the way
of a mechanization of learning by reading. Yet when you think about
it, reading is probably the dominant way
you learn at this stage in
your life. Consider what you’re doing at this very moment.
It’s a good bet that you are
reading this sentence because,
earlier, you set yourself the goal of learning about the field of AI.
Yet
the formal
models of learning provided in AIMA’s Part IV
(which are all and only the models at play in AI) cannot be
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applied to
learning by
reading.[22]
These models all start with a function-based view of learning.
According to
this view, to learn is almost invariably to produce an
underlying function  on the basis of a restricted set of
pairs

For example, consider receiving inputs consisting of 1, 2, 3, 4, and
5, and corresponding range values of 1, 4, 9,
16, and 25; the goal is
to “learn” the underlying mapping from natural numbers to
natural numbers. In this case,
assume that the underlying function is
 , and that you do “learn” it. While this narrow
model of learning can be
productively applied to a number of
processes, the process of reading isn’t one of them. Learning by
reading
cannot (at least for the foreseeable future) be modeled as
divining a function that produces argument-value pairs.
Instead, your
reading about AI can pay dividends only if your knowledge has
increased in the right way, and if
that knowledge leaves you
poised to be able to produce behavior taken to confirm sufficient
mastery of the
subject area in question. This behavior can range from
correctly answering and justifying test questions
regarding AI, to
producing a robust, compelling presentation or paper that signals your
achievement.

Two points deserve to be made about machine reading. First, it may not
be clear to all readers that reading is an
ability that is central to
intelligence. The centrality derives from the fact that intelligence
requires vast
knowledge. We have no other means of getting systematic
knowledge into a system than to get it in from text,
whether text on
the web, text in libraries, newspapers, and so on. You might even say
that the big problem with
AI has been that machines really don’t
know much compared to humans. That can only be because of the fact
that humans read (or hear: illiterate people can listen to text being
uttered and learn that way). Either machines
gain knowledge by humans
manually encoding and inserting knowledge, or by reading and
listening. These are
brute facts. (We leave aside supernatural
techniques, of course. Oddly enough, Turing didn’t: he seemed to
think
ESP should be discussed in connection with the powers of minds
and machines. See Turing,
1950.)[23]

Now for the second point. Humans able to read have invariably also
learned a language, and learning languages
has been modeled in
conformity to the function-based approach adumbrated just above
(Osherson et al. 1986).
However, this doesn’t entail that an
artificial agent able to read, at least to a significant degree, must
have really
and truly learned a natural language. AI is first and
foremost concerned with engineering computational artifacts
that
measure up to some test (where, yes, sometimes that test is from the
human sphere), not with whether these
artifacts process information in
ways that match those present in the human case. It may or may not be
necessary,
when engineering a machine that can read, to imbue that
machine with human-level linguistic competence. The
issue is
empirical, and as time unfolds, and the engineering is pursued, we
shall no doubt see the issue settled.

Two additional high mountains facing AI are subjective consciousness
and creativity, yet it would seem that
these great challenges are ones
the field apparently hasn’t even come to grips with. Mental
phenomena of
paramount importance to many philosophers of mind and
neuroscience are simply missing from AIMA. For
example,
consciousness is only mentioned in passing in AIMA, but
subjective consciousness is the most
important thing in our lives
– indeed we only desire to go on living because we wish to go on
enjoying subjective
states of certain types. Moreover, if human minds
are the product of evolution, then presumably phenomenal
consciousness
has great survival value, and would be of tremendous help to a robot
intended to have at least the
behavioral repertoire of the first
creatures with brains that match our own (hunter-gatherers; see Pinker
1997). Of
course, subjective consciousness is largely missing from the
sister fields of cognitive psychology and
computational cognitive
modeling as well. We discuss some of these challenges in the
Philosophy of Artificial
Intelligence
section below. For a list of similar challenges to cognitive science,
see the relevant
section of the
entry on cognitive science.[24]

To some readers, it might seem in the very least tendentious to point
to subjective consciousness as a major
challenge to AI that it has yet
to address. These readers might be of the view that pointing to this
problem is to
look at AI through a distinctively philosophical prism,
and indeed a controversial philosophical standpoint.

But as its literature makes clear, AI measures itself by looking to
animals and humans and picking out in them
remarkable mental powers,
and by then seeing if these powers can be mechanized. Arguably the
power most
important to humans (the capacity to experience) is nowhere
to be found on the target list of most AI researchers.

f
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There may be a
good reason for this (no formalism is at hand, perhaps), but there is
no denying the state of
affairs in question obtains, and that, in
light of how AI measures itself, that it’s worrisome.

As to creativity, it’s quite remarkable that the power we most
praise in human minds is nowhere to be found in
AIMA. Just as
in (Charniak & McDermott 1985) one cannot find
‘neural’ in the index, ‘creativity’
can’t be found
in the index of AIMA. This is particularly
odd because many AI researchers have in fact worked on creativity
(especially those coming out of philosophy; e.g., Boden 1994,
Bringsjord & Ferrucci 2000).

Although the focus has been on AIMA, any of its counterparts
could have been used. As an example, consider
Artificial
Intelligence: A New Synthesis, by Nils Nilsson. As in the case of
AIMA, everything here revolves
around a gradual progression
from the simplest of agents (in Nilsson’s case, reactive
agents), to ones having
more and more of those powers that
distinguish persons. Energetic readers can verify that there is a
striking
parallel between the main sections of Nilsson’s book
and AIMA. In addition, Nilsson, like Russell and Norvig,
ignores phenomenal consciousness, reading, and creativity. None of the
three are even mentioned. Likewise, a
recent comprehensive AI textbook
by Luger (2008) follows the same pattern.

A final point to wrap up this section. It seems quite plausible to
hold that there is a certain inevitability to the
structure of an AI
textbook, and the apparent reason is perhaps rather interesting. In
personal conversation, Jim
Hendler, a well-known AI researcher who is
one of the main innovators behind Semantic Web (Berners-Lee,
Hendler,
Lassila 2001), an under-development “AI-ready” version of
the World Wide Web, has said that this
inevitability can be rather
easily displayed when teaching Introduction to AI; here’s how.
Begin by asking
students what they think AI is. Invariably, many
students will volunteer that AI is the field devoted to building
artificial creatures that are intelligent. Next, ask for examples of
intelligent creatures. Students always respond by
giving examples
across a continuum: simple multi-cellular organisms, insects, rodents,
lower mammals, higher
mammals (culminating in the great apes), and
finally human persons. When students are asked to describe the
differences between the creatures they have cited, they end up
essentially describing the progression from simple
agents to ones
having our (e.g.) communicative powers. This progression gives the
skeleton of every
comprehensive AI textbook. Why does this happen? The
answer seems clear: it happens because we can’t resist
conceiving of AI in terms of the powers of extant creatures with which
we are familiar. At least at present,
persons, and the creatures who
enjoy only bits and pieces of personhood, are – to repeat
– the measure of
AI.[25]

3.2 Logic-Based AI: Some Surgical Points

Reasoning based on classical deductive logic is monotonic; that is, if
 , then for all , .
Commonsense reasoning is not monotonic. While
you may currently believe on the basis of reasoning that your
house is
still standing, if while at work you see on your computer screen that
a vast tornado is moving through
the location of your house, you will
drop this belief. The addition of new information causes previous
inferences
to fail. In the simpler example that has become an AI
staple, if I tell you that Tweety is a bird, you will infer that
Tweety can fly, but if I then inform you that Tweety is a penguin, the
inference evaporates, as well it should.
Nonmonotonic (or defeasible)
logic includes formalisms designed to capture the mechanisms
underlying these
kinds of examples. See the separate entry on
logic and artificial intelligence,
which is focused on nonmonotonic
reasoning, and reasoning about time
and change. It also provides a history of the early days of
logic-based AI,
making clear the contributions of those who founded
the tradition (e.g., John McCarthy and Pat Hayes; see their
seminal
1969 paper).

The formalisms and techniques of logic-based AI have reached a level
of impressive maturity – so much so that
in various academic and
corporate laboratories, implementations of these formalisms and
techniques can be used
to engineer robust, real-world software. It is
strongly recommend that readers who have an interest to learn
where AI
stands in these areas consult (Mueller 2006), which provides, in one
volume, integrated coverage of
nonmonotonic reasoning (in the form,
specifically, of circumscription), and reasoning about time and change
in
the situation and event calculi. (The former calculus is also
introduced by Thomason. In the second, timepoints
are included, among
other things.) The other nice thing about (Mueller 2006) is that the
logic used is multi-
sorted first-order logic (MSL), which has
unificatory power that will be known to and appreciated by many
technical philosophers and logicians (Manzano 1996).

Φ ⊢ ϕ ψ Φ ∪ {ψ} ⊢ ϕ
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We now turn to three further topics of importance in AI. They are:

1. The overarching scheme of logicist AI, in the context of the
attempt to build intelligent artificial agents.
2. Common Logic and the intensifying quest for interoperability.
3. A technique that can be called encoding down, which can
allow machines to reason efficiently over

knowledge that, were it not
encoded down, would, when reasoned over, lead to paralyzing
inefficiency.

This trio is covered in order, beginning with the first.

Detailed accounts of logicist AI that fall under the agent-based
scheme can be found in (Nilsson 1991,
Bringsjord & Ferrucci
1998).[26].
The core idea is that an intelligent agent receives percepts from the
external
world in the form of formulae in some logical system (e.g.,
first-order logic), and infers, on the basis of these
percepts and its
knowledge base, what actions should be performed to secure the
agent’s goals. (This is of course
a barbaric simplification.
Information from the external world is encoded in formulae,
and transducers to
accomplish this feat may be components of the
agent.)

To clarify things a bit, we consider, briefly, the logicist view in
connection with arbitrary logical systems
 .[27]
We obtain a particular logical system by setting  in the
appropriate way. Some examples: If , then we
have a system at
the level of FOL [following the standard notation from model theory;
see e.g. (Ebbinghaus et al.
1984)].  is
second-order logic, and  is a
“small system” of infinitary logic (countably infinite
conjunctions and disjunctions are permitted). These logical systems
are all extensional, but there are intensional
ones as
well. For example, we can have logical systems corresponding to those
seen in standard propositional
modal logic (Chellas 1980). One
possibility, familiar to many philosophers, would be propositional
KT45, or

.[28]
In each case, the system in question includes a relevant alphabet
from which well-formed formulae
are constructed by way of a formal
grammar, a reasoning (or proof) theory, a formal semantics, and at
least some
meta-theoretical results (soundness, completeness, etc.).
Taking off from standard notation, we can thus say that
a set of
formulas in some particular logical system ,
 , can be used, in conjunction with some
reasoning
theory, to infer some particular formula
 . (The reasoning may be deductive, inductive,
abductive, and so on.
Logicist AI isn’t in the least restricted
to any particular mode of reasoning.) To say that such a situation
holds,
we write

When the logical system referred to is clear from context, or when we
don’t care about which logical system is
involved, we can simply
write

Each logical system, in its formal semantics, will include objects
designed to represent ways the world pointed to
by formulae in this
system can be. Let these ways be denoted by .
When we aren’t concerned with which
logical system is involved,
we can simply write . To say that such a way models a formula
  we write

We extend this to a set of formulas in the natural way:
  means that all the elements of  are true on
 .
Now, using the simple machinery we’ve established, we
can describe, in broad strokes, the life of an intelligent
agent that
conforms to the logicist point of view. This life conforms to the
basic cycle that undergirds intelligent
agents in the AIMA
sense.

To begin, we assume that the human designer, after studying the world,
uses the language of a particular logical
system to give to our agent
an initial set of beliefs  about what this world is like.
In doing so, the designer
works with a formal model of this world,
 , and ensures that . Following tradition, we
refer to  as
the agent’s (starting) knowledge
base. (This terminology, given that we are talking about the
agent’s beliefs, is
known to be peculiar, but it
persists.) Next, the agent ADJUSTS its knowlege base to produce
a new one, .
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We say that adjustment is carried out by way
of an operation ; so
 . How does the adjustment
process,
 , work? There are many possibilities. Unfortunately,
many believe that the simplest possibility (viz.,


 equals the set of all formulas that can be
deduced in some elementary manner from ) exhausts
all the
possibilities. The reality is that adjustment, as
indicated above, can come by way of any mode of reasoning
–
induction, abduction, and yes, various forms of deduction
corresponding to the logical system in play. For
present purposes,
it’s not important that we carefully enumerate all the options.

The cycle continues when the agent ACTS on the environment, in
an attempt to secure its goals. Acting, of
course, can cause changes
to the environment. At this point, the agent SENSES the
environment, and this new
information  factors into the
process of adjustment, so that
 . The cycle of SENSES

ADJUSTS  ACTS continues to produce
the life  … of
our agent.

It may strike you as preposterous that logicist AI be touted as an
approach taken to replicate all of cognition.
Reasoning over
formulae in some logical system might be appropriate for
computationally capturing high-level
tasks like trying to solve a math
problem (or devising an outline for an entry in the Stanford
Encyclopedia of
Philosophy), but how could such reasoning apply to
tasks like those a hawk tackles when swooping down to
capture
scurrying prey? In the human sphere, the task successfully negotiated
by athletes would seem to be in the
same category. Surely, some will
declare, an outfielder chasing down a fly ball doesn’t prove
theorems to figure
out how to pull off a diving catch to save the
game! Two brutally reductionistic arguments can be given in
support of
this “logicist theory of everything” approach towards
cognition. The first stems from the fact that a
complete proof
calculus for just first-order logic can simulate all of Turing-level
computation (Chapter 11,
Boolos et al. 2007). The second justification
comes from the role logic plays in foundational theories of
mathematics and mathematical reasoning. Not only are foundational
theories of mathematics cast in logic (Potter
2004), but there have
been successful projects resulting in machine verification of ordinary
non-trivial theorems,
e.g., in the
Mizar project
alone around 50,000 theorems have been verified (Naumowicz and
Kornilowicz 2009).
The argument goes that if any approach to AI can be
cast mathematically, then it can be cast in a logicist form.

Needless to say, such a declaration has been carefully considered by
logicists beyond the reductionistic argument
given above. For example,
Rosenschein and Kaelbling (1986) describe a method in which logic is
used to
specify finite state machines. These machines are used at
“run time” for rapid, reactive processing. In this
approach, though the finite state machines contain no logic in the
traditional sense, they are produced by logic
and inference. Real
robot control via first-order theorem proving has been demonstrated by
Amir and Maynard-
Reid (1999, 2000, 2001). In fact, you can
download
version 2.0 of the software that makes this approach real for
a Nomad
200 mobile robot in an office environment. Of course, negotiating an
office environment is a far cry
from the rapid adjustments an
outfielder for the Yankees routinely puts on display, but certainly
it’s an open
question as to whether future machines will be able
to mimic such feats through rapid reasoning. The question is
open if
for no other reason than that all must concede that the constant
increase in reasoning speed of first-order
theorem provers is
breathtaking. (For up-to-date news on this increase, visit and monitor
the
TPTP site.)
There is
no known reason why the software engineering in question
cannot continue to produce speed gains that would
eventually allow an
artificial creature to catch a fly ball by processing information in
purely logicist fashion.

Now we come to the second topic related to logicist AI that warrants
mention herein: common logic and the
intensifying quest for
interoperability between logic-based systems using different logics.
Only a few brief
comments are
offered.[29]
Readers wanting more can explore the links provided in the course of
the summary.

One standardization is through what is known as
Common Logic
(CL), and variants thereof. (CL is published as
an
ISO standard
– ISO is the International Standards Organization.)
Philosophers interested in logic, and of
course logicians, will find
CL to be quite fascinating. From an historical perspective, the advent
of CL is
interesting in no small part because the person spearheading
it is none other than Pat Hayes, the same Hayes
who, as we have seen,
worked with McCarthy to establish logicist AI in the 1960s. Though
Hayes was not at the
original 1956 Dartmouth conference, he certainly
must be regarded as one of the founders of contemporary AI.)
One of
the interesting things about CL, at least as we see it, is that it
signifies a trend toward the marriage of
logics, and programming
languages and environments. Another system that is a logic/programming
hybrid is
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Athena,
which can be used as a programming language, and is at the same time
a form of MSL. Athena is based
on formal systems known as
denotational proof languages (Arkoudas 2000).

How is interoperability between two systems to be enabled by CL?
Suppose one of these systems is based on
logic , and the other on
 . (To ease exposition, assume that both logics are first-order.)
The idea is that a theory

, that is, a set of formulae in
 , can be translated into CL, producing , and then
this theory can be
translated into . CL thus becomes an
inter lingua. Note that what counts as a well-formed formula in
  can be
different than what counts as one in . The two
logics might also have different proof theories. For example,
inference in  might be based on resolution, while inference in
  is of the natural deduction variety. Finally, the
symbol sets
will be different. Despite these differences, courtesy of the
translations, desired behavior can be
produced across the translation.
That, at any rate, is the hope. The technical challenges here are
immense, but
federal monies are increasingly available for attacks on
the problem of interoperability.

Now for the third topic in this section: what can be called
encoding down. The technique is easy to understand.
Suppose
that we have on hand a set  of first-order axioms. As is
well-known, the problem of deciding, for
arbitrary formula ,
whether or not it’s deducible from  is
Turing-undecidable: there is no Turing machine or
equivalent that can
correctly return “Yes” or “No” in the general
case. However, if the domain in question is
finite, we can encode this
problem down to the propositional calculus. An assertion that all
things have  is of
course equivalent to the assertion that
 , , , as long as the domain contains only these
three objects. So
here a first-order quantified formula becomes a
conjunction in the propositional calculus. Determining whether
such
conjunctions are provable from axioms themselves expressed in the
propositional calculus is Turing-
decidable, and in addition, in
certain clusters of cases, the check can be done very quickly in the
propositional
case; very quickly. Readers interested in
encoding down to the propositional calculus should consult recent
DARPA-sponsored work by Bart Selman.
Please note that the target of encoding down doesn’t need to be
the
propositional calculus. Because it’s generally harder for
machines to find proofs in an intensional logic than in
straight
first-order logic, it is often expedient to encode down the former to
the latter. For example, propositional
modal logic can be encoded in
multi-sorted logic (a variant of FOL); see (Arkoudas & Bringsjord
2005).
Prominent usage of such an encoding down can be found in a set
of systems known as Description Logics, which
are a set of
logics less expressive than first-order logic but more expressive than
propositional logic (Baader et al.
2003). Description logics are used
to reason about ontologies in a given domain and have been
successfully used,
for example, in the biomedical domain (Smith et al.
2007).

3.3 Non-Logicist AI: A Summary

It’s tempting to define non-logicist AI by negation: an approach
to building intelligent agents that rejects the
distinguishing
features of logicist AI. Such a shortcut would imply that the agents
engineered by non-logicist AI
researchers and developers, whatever the
virtues of such agents might be, cannot be said to know that ;
– for
the simple reason that, by negation, the non-logicist
paradigm would have not even a single declarative
proposition that is
a candidate for ;. However, this isn’t a particularly
enlightening way to define non-symbolic
AI. A more productive approach
is to say that non-symbolic AI is AI carried out on the basis of
particular
formalisms other than logical systems, and to then
enumerate those formalisms. It will turn out, of course, that
these
formalisms fail to include knowledge in the normal sense. (In
philosophy, as is well-known, the normal
sense is one according to
which if  is known,  is a declarative statement.)

From the standpoint of formalisms other than logical systems,
non-logicist AI can be partitioned into symbolic
but non-logicist
approaches, and connectionist/neurocomputational approaches. (AI
carried out on the basis of
symbolic, declarative structures that, for
readability and ease of use, are not treated directly by researchers
as
elements of formal logics, does not count. In this category fall
traditional semantic networks, Schank’s (1972)
conceptual
dependency scheme, frame-based schemes, and other such schemes.) The
former approaches, today,
are probabilistic, and are based on the
formalisms (Bayesian networks) covered
below.
The latter approaches are
based, as we have noted, on formalisms that
can be broadly termed “neurocomputational.” Given our
space
constraints, only one of the formalisms in this category is
described here (and briefly at that): the aforementioned
artificial
neural
networks.[30].
Though artificial neural networks, with an appropriate architecture,
could be
used for arbitrary computation, they are almost exclusively
used for building learning systems.
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Neural nets are composed of units or nodes designed to
represent neurons, which are connected by links
designed to
represent dendrites, each of which has a numeric weight.

A “Neuron” Within an Artificial Neural Network (from
AIMA3e)

It is usually assumed that some of the units work in symbiosis with
the external environment; these units form
the sets of input
and output units. Each unit has a current activation
level, which is its output, and can compute,
based on its inputs
and weights on those inputs, its activation level at the next moment
in time. This computation
is entirely local: a unit takes account of
but its neighbors in the net. This local computation is calculated in
two
stages. First, the input function, , gives the
weighted sum of the unit’s input values, that is, the sum of the
input activations multiplied by their weights:

In the second stage, the activation function, , takes the
input from the first stage as argument and generates the
output, or
activation level, :

One common (and confessedly elementary) choice for the activation
function (which usually governs all units in
a given net) is the step
function, which usually has a threshold  that sees to it that a 1
is output when the input is
greater than , and that 0 is output
otherwise. This is supposed to be “brain-like” to some
degree, given that 1
represents the firing of a pulse from a neuron
through an axon, and 0 represents no firing. A simple three-layer
neural net is shown in the following picture.

A Simple Three-Layer Artificial Neural Network (from
AIMA3e)

As you might imagine, there are many different kinds of neural
networks. The main distinction is between feed-
forward and
recurrent networks. In feed-forward networks like the one
pictured immediately above, as their
name suggests, links move
information in one direction, and there are no cycles; recurrent
networks allow for
cycling back, and can become rather complicated.
For a more detailed presentation, see the
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Supplement on Neural Nets.

Neural networks were fundamentally plagued by the fact that while they
are simple and have theoretically
efficient learning algorithms, when
they are multi-layered and thus sufficiently expressive to represent
non-linear
functions, they were very hard to train in practice. This
changed in the mid 2000s with the advent of methods
that exploit
state-of-the-art hardware better (Rajat et al. 2009). The
backpropagation method for training multi-
layered neural networks can
be translated into a sequence of repeated simple arithmetic operations
on a large set
of numbers. The general trend in computing hardware has
favored algorithms that are able to do a large of
number of simple
operations that are not that dependent on each other, versus a small
of number of complex and
intricate operations.

Another key recent observation is that deep neural networks can be
pre-trained first in an unsupervised phase
where they are just fed
data without any labels for the data. Each hidden layer is forced to
represent the outputs
of the layer below. The outcome of this training
is a series of layers which represent the input domain with
increasing
levels of abstraction. For example, if we pre-train the network with
images of faces, we would get a
first layer which is good at detecting
edges in images, a second layer which can combine edges to form facial
features such as eyes, noses etc., a third layer which responds to
groups of features, and so on (LeCun et al.
2015).

Perhaps the best technique for teaching students about neural networks
in the context of other statistical learning
formalisms and methods is
to focus on a specific problem, preferably one that seems unnatural to
tackle using
logicist techniques. The task is then to seek to engineer
a solution to the problem, using any and all techniques
available. One nice problem is handwriting recognition (which
also happens to have a rich philosophical
dimension; see e.g.
Hofstadter & McGraw 1995). For example, consider the problem of
assigning, given as input
a handwritten digit , the correct
digit, 0 through 9. Because there is a database of 60,000 labeled
digits available
to researchers (from the National Institute of
Science and Technology), this problem has evolved into a
benchmark
problem for comparing learning algorithms. It turns out that neural
networks currently reign as the
best approach to the problem according
to a recent ranking by Benenson (2016).

Readers interested in AI (and computational cognitive science) pursued
from an overtly brain-based orientation
are encouraged to explore the
work of Rick Granger (2004a, 2004b) and researchers in his
Brain Engineering
Laboratory
and
W. H. Neukom Institute for Computational Sciences.
The contrast between the “dry”, logicist AI
started at
the original 1956 conference, and the approach taken here by Granger
and associates (in which brain
circuitry is directly modeled) is
remarkable. For those interested in computational properties of neural
networks,
Hornik et al. (1989) address the general representation
capability of neural networks independent of learning.

3.4 AI Beyond the Clash of Paradigms

At this point the reader has been exposed to the chief formalisms in
AI, and may wonder about heterogeneous
approaches that bridge them. Is
there such research and development in AI? Yes. From an
engineering
standpoint, such work makes irresistibly good
sense. There is now an understanding that, in order to build
applications that get the job done, one should choose from a toolbox
that includes logicist,
probabilistic/Bayesian, and neurocomputational
techniques. Given that the original top-down logicist paradigm
is
alive and thriving (e.g., see Brachman & Levesque 2004, Mueller
2006), and that, as noted, a resurgence of
Bayesian and
neurocomputational approaches has placed these two paradigms on solid,
fertile footing as well, AI
now moves forward, armed with this
fundamental triad, and it is a virtual certainty that applications
(e.g., robots)
will be engineered by drawing from elements of all
three. Watson’s DeepQA architecture is one recent example
of an
engineering system that leverages multiple paradigms. For a detailed
discussion, see the

Supplement on Watson’s DeepQA Architecture.

Google DeepMind’s AlphaGo is another example of a multi-paradigm
system, although in a much narrower
form than Watson. The central
algorithmic problem in games such as Go or Chess is to search through
a vast
sequence of valid moves. For most non-trivial games, this is
not feasible to do so exhaustively. The Monte Carlo
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tree search (MCTS)
algorithm gets around this obstacle by searching through an enormous
space of valid moves
in a statistical fashion (Browne et al. 2012).
While MCTS is the central algorithm in AlpaGo, there are two
neural
networks which help evaluate states in the game and help model how
expert opponents play (Silver et al.
2016). It should be noted that
MCTS is behind almost all the winning submissions in general game
playing
(Finnsson 2012).

What, though, about deep, theoretical integration of the main
paradigms in AI? Such integration is at present
only a possibility for
the future, but readers are directed to the research of some striving
for such integration. For
example: Sun (1994, 2002) has been working
to demonstrate that human cognition that is on its face symbolic in
nature (e.g., professional philosophizing in the analytic tradition,
which deals explicitly with arguments and
definitions carefully
symbolized) can arise from cognition that is neurocomputational in
nature. Koller (1997)
has investigated the marriage between
probability theory and logic. And, in general, the very recent arrival
of so-
called human-level AI is being led by theorists seeking
to genuinely integrate the three paradigms set out above
(e.g.,
Cassimatis 2006).

Finally, we note that cognitive architectures such as Soar
(Laird 2012) and PolyScheme (Cassimatis 2006) are
another area where
integration of different fields of AI can be found. For example, one
such endeavor striving to
build human-level AI is the Companions
project (Forbus and Hinrichs 2006). Companions are long-lived
systems
that strive to be human-level AI systems that function as
collaborators with humans. The Companions
architecture tries to solve
multiple AI problems such as reasoning and learning, interactivity,
and longevity in
one unifying system.

4. The Explosive Growth of AI
As we noted above, work on AI has mushroomed over the past couple of
decades. Now that we have looked a bit
at the content that composes
AI, we take a quick look at the explosive growth of AI.

First, a point of clarification. The growth of which we speak is not a
shallow sort correlated with amount of
funding provided for a given
sub-field of AI. That kind of thing happens all the time in all
fields, and can be
triggered by entirely political and financial
changes designed to grow certain areas, and diminish others. Along
the
same line, the growth of which we speak is not correlated with the
amount of industrial activity revolving
around AI (or a sub-field
thereof); for this sort of growth too can be driven by forces quite
outside an expansion
in the scientific breadth of
AI.[31]
Rather, we are speaking of an explosion of deep content: new
material which
someone intending to be conversant with the field needs
to know. Relative to other fields, the size of the
explosion may or
may not be unprecedented. (Though it should perhaps be noted that an
analogous increase in
philosophy would be marked by the development of
entirely new formalisms for reasoning, reflected in the fact
that,
say, longstanding philosophy textbooks like Copi’s (2004)
Introduction to Logic are dramatically rewritten
and enlarged
to include these formalisms, rather than remaining anchored to
essentially immutable core
formalisms, with incremental refinement
around the edges through the years.) But it certainly appears to be
quite
remarkable, and is worth taking note of here, if for no other
reason than that AI’s near-future will revolve in
significant
part around whether or not the new content in question forms a
foundation for new long-lived
research and development that would not
otherwise
obtain.[32]

AI has also witnessed an explosion in its usage in various artifacts
and applications. While we are nowhere near
building a machine with
capabilities of a human or one that acts rationally in all scenarios
according to the
Russell/Hutter definition above, algorithms that have
their origins in AI research are now widely deployed for
many tasks in
a variety of domains.

4.1 Bloom in Machine Learning

A huge part of AI’s growth in applications has been made
possible through invention of new algorithms in the
subfield of
machine learning. Machine learning is concerned with building
systems that improve their
performance on a task when given examples
of ideal performance on the task, or improve their performance with
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repeated experience on the task. Algorithms from machine learning have
been used in speech recognition
systems, spam filters, online
fraud-detection systems, product-recommendation systems, etc. The
current state-
of-the-art in machine learning can be divided into three
areas (Murphy 2013, Alpaydin 2014):

1. Supervised Learning: A form of learning in which a computer
tries to learn a function  given examples,
the training data
 , of its values at various points in its domain

A
sample task would be trying to label images of faces with a
person’s name. The supervision in
supervised learning comes in
the form of the value of the function  at various points
  in some part of
the domain of the function. This is usually
given in the form of a fixed set of input and output pairs for the
function. Let  be the “learned function.” The goal
of supervised learning is have  match as closely as
possible
the true function  over the same domain. The error is
usually defined in terms of an error
function, for instance, , over the training data .
Other forms of supervision
and goals for learning are possible. For
example, in active learning the learning algorithm can request
the
value of the function for arbitrary inputs. Supervised learning
dominates the field of machine learning and
has been used in almost
all practical applications mentioned just above.

2. Unsupervised Learning: Here the machine tries to find
useful knowledge or information when given
some raw data . There is no function associated with
the input that has to be learned. The
idea is that the machine helps
uncover interesting patterns or information that could be hidden in
the data.
One use of unsupervised learning is data mining,
where large volumes of data are searched for interesting
information.
PageRank, one of the earliest algorithms used by the Google
search engine, can be considered
to be an unsupervised learning system
that ranks pages without any human supervision (Chapter 14.10,
Hastie
et al. 2009).

3. Reinforcement Learning: Here a machine is set loose in an
environment where it constantly acts and
perceives (similar to the
Russell/Hutter view above) and only occasionally receives
feedback on its
behavior in the form of rewards or punishments. The
machine has to learn to behave rationally from this
feedback. One use
of reinforcement learning has been in building agents to play computer
games. The
objective here is to build agents that map sensory data
from the game at every time instant to an action that
would help win
in the game or maximize a human player’s enjoyment of the game.
In most games, we
know how well we are playing only at the end of the
game or only at infrequent intervals throughout the
game (e.g., a
chess game that we feel we are winning could quickly turn against us
at the end). In
supervised learning, the training data has ideal
input-output pairs. This form of learning is not suitable for
building
agents that have to operate across a length of time and are judged not
on one action but a series of
actions and their effects on the
environment. The field of Reinforcement Learning tries to tackle this
problem through a variety of methods. Though a bit dated, Sutton and
Barto (1998) provide a
comprehensive introduction to the field.

In addition to being used in domains that are traditionally the ken of
AI, machine-learning algorithms have also
been used in all stages of
the scientific process. For example, machine-learning techniques are
now routinely
applied to analyze large volumes of data generated from
particle accelerators. CERN, for instance, generates a
petabyte
(  bytes) per second, and statistical algorithms that have
their origins in AI are used to filter and
analyze this data. Particle
accelerators are used in fundamental experimental research in physics
to probe the
structure of our physical universe. They work by
colliding larger particles together to create much finer particles.
Not all such events are fruitful. Machine-learning methods have been
used to select events which are then
analyzed further (Whiteson &
Whiteson 2009 and Baldi et al. 2014). More recently, researchers at
CERN
launched a machine learning
competition
to aid in the analysis of the Higgs Boson. The goal of this challenge
was to develop algorithms that separate meaningful events from
background noise given data from the Large
Hadron Collider, a particle
accelerator at CERN.

In the past few decades, there has been an explosion in data that does
not have any explicit semantics attached to
it. This data is generated
by both humans and machines. Most of this data is not easily
machine-processable; for
example, images, text, video (as opposed to
carefully curated data in a knowledge- or data-base). This has given
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rise to a huge industry that applies AI techniques to get usable
information from such enormous data. This field
of applying techniques
derived from AI to large volumes of data goes by names such as
“data mining,” “big
data,”
“analytics,” etc. This field is too vast to even
moderately cover in the present article, but we note that there
is no
full agreement on what constitutes such a “big-data”
problem. One definition, from Madden (2012), is that
big data differs
from traditional machine-processable data in that it is too big (for
most of the existing state-of-
the-art hardware), too quick (generated
at a fast rate, e.g. online email transactions), or too hard. It is in
the too-
hard part that AI techniques work quite well. While this
universe is quite varied, we use the Watson’s system
later in
this article as an AI-relevant exemplar. As we will see later, while
most of this new explosion is powered
by learning, it isn’t
entirely limited to just learning. This bloom in learning algorithms
has been supported by
both a resurgence in neurocomputational
techniques and probabilistic techniques.

4.2 The Resurgence of Neurocomputational Techniques

One of the remarkable aspects of (Charniak & McDermott 1985) is
this: The authors say the central dogma of AI
is that “What the
brain does may be thought of at some level as a kind of
computation” (p. 6). And yet nowhere
in the book is brain-like
computation discussed. In fact, you will search the index in vain for
the term ‘neural’
and its variants. Please note that the
authors are not to blame for this. A large part of AI’s growth
has come from
formalisms, tools, and techniques that are, in some
sense, brain-based, not logic-based. A paper that conveys the
importance and maturity of neurocomputation is (Litt et al. 2006).
(Growth has also come from a return of
probabilistic techniques that
had withered by the mid-70s and 80s. More about that momentarily, in
the next
“resurgence”
section.)

One very prominent class of non-logicist formalism does make an
explicit nod in the direction of the brain: viz.,
artificial neural
networks (or as they are often simply called, neural
networks, or even just neural nets). (The
structure of
neural networks and more recent developments are discussed
above).
Because Minsky and Pappert’s
(1969) Perceptrons led many
(including, specifically, many sponsors of AI research and
development) to
conclude that neural networks didn’t have
sufficient information-processing power to model human cognition,
the
formalism was pretty much universally dropped from AI. However, Minsky
and Pappert had only considered
very limited neural networks.
Connectionism, the view that intelligence consists not in
symbolic processing, but
rather non-symbolic processing at
least somewhat like what we find in the brain (at least at the
cellular level),
approximated specifically by artificial neural
networks, came roaring back in the early 1980s on the strength of
more
sophisticated forms of such networks, and soon the situation was (to
use a metaphor introduced by John
McCarthy) that of two horses in a
race toward building truly intelligent agents.

If one had to pick a year at which connectionism was resurrected, it
would certainly be 1986, the year Parallel
Distributed
Processing (Rumelhart & McClelland 1986) appeared in print.
The rebirth of connectionism was
specifically fueled by the
back-propagation (backpropagation) algorithm over neural networks,
nicely covered in
Chapter 20 of AIMA. The
symbolicist/connectionist race led to a spate of lively debate in the
literature (e.g.,
Smolensky 1988, Bringsjord 1991), and some AI
engineers have explicitly championed a methodology marked
by a
rejection of knowledge representation and reasoning. For example,
Rodney Brooks was such an engineer;
he wrote the well-known
“Intelligence Without Representation” (1991), and his Cog
Project, to which we
referred above, is arguably an incarnation of the
premeditatedly non-logicist approach. Increasingly, however,
those in
the business of building sophisticated systems find that both
logicist and more neurocomputational
techniques are required (Wermter
& Sun
2001).[33]
In addition, the neurocomputational paradigm today includes
connectionism only as a proper part, in light of the fact that some of
those working on building intelligent
systems strive to do so by
engineering brain-based computation outside the neural network-based
approach (e.g.,
Granger 2004a, 2004b).

Another recent resurgence in neurocomputational techniques has
occurred in machine learning. The modus
operandi in machine learning
is that given a problem, say recognizing handwritten digits
  or faces,
from a 2D matrix representing an image
of the digits or faces, a machine learning or a domain expert would
construct a feature vector representation function for the
task. This function is a transformation of the input
into a format
that tries to throw away irrelevant information in the input and keep
only information useful for the
task. Inputs transformed by 
are termed features. For recognizing faces, irrelevant
information could be the
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amount of lighting in the scene and relevant
information could be information about facial features. The machine
is
then fed a sequence of inputs represented by the features and the
ideal or ground truth output values for those
inputs. This converts
the learning challenge from that of having to learn the function
  from the examples: 

 to having to learn
from possibly easier data: 
. Here
the function  is the function that computes the feature

vector
representation of the input. Formally,  is assumed to be a
composition of the functions  and . That is,
for any
input , . This is
denoted by . For any input, the features are first
computed, and
then the function  is applied. If the feature
representation  is provided by the domain expert, the learning
problem becomes simpler to the extent the feature representation takes
on the difficulty of the task. At one
extreme, the feature vector
could hide an easily extractable form of the answer in the input and
in the other
extreme the feature representation could be just the
plain input.

For non-trivial problems, choosing the right representation is vital.
For instance, one of the drastic changes in the
AI landscape was due
to Minsky and Papert’s (1969) demonstration that the perceptron
cannot learn even the
binary XOR function, but this function
can be learnt by the perceptron if we have the right representation.
Feature engineering has grown to be one of the most labor intensive
tasks of machine learning, so much so that it
is considered to be one
of the “black arts” of machine learning. The other
significant black art of learning
methods is choosing the right
parameters. These black arts require significant human expertise and
experience,
which can be quite difficult to obtain without significant
apprenticeship (Domingos 2012). Another bigger issue
is that the task
of feature engineering is just knowledge representation in a new skin.

Given this state of affairs, there has been a recent resurgence in
methods for automatically learning a feature
representation function
 ; such methods potentially bypass a large part of human labor
that is traditionally
required. Such methods are based mostly on what
are now termed deep neural networks. Such networks are
simply
neural networks with two or more hidden layers. These networks allow
us to learn a feature function  by
using one or more of the
hidden layers to learn . The general form of learning in which
one learns from the raw
sensory data without much hand-based feature
engineering has now its own term: deep learning. A general and
yet concise definition (Bengio et al. 2015) is:

Deep learning can safely be regarded as the study of models that
either involve a greater amount of
composition of learned functions or
learned concepts than traditional machine learning does.
(Bengio et
al. 2015, Chapter 1)

Though the idea has been around for decades, recent innovations
leading to more efficient learning techniques
have made the approach
more feasible (Bengio et al. 2013). Deep-learning methods have
recently produced
state-of-the-art results in image recognition (given
an image containing various objects, label the objects from a
given
set of labels), speech recognition (from audio input, generate a
textual representation), and the analysis of
data from particle
accelerators (LeCun et al. 2015). Despite impressive results in tasks
such as these, minor and
major issues remain unresolved. A minor issue
is that significant human expertise is still needed to choose an
architecture and set up the right parameters for the architecture; a
major issue is the existence of so-called
adversarial inputs,
which are indistinguishable from normal inputs to humans but are
computed in a special
manner that makes a neural network regard them
as different than similar inputs in the training data. The
existence
of such adversarial inputs, which remain stable across training data,
has raised doubts about how well
performance on benchmarks can
translate into performance in real-world systems with sensory noise
(Szegedy et
al. 2014).

4.3 The Resurgence of Probabilistic Techniques

There is a second dimension to the explosive growth of AI: the
explosion in popularity of probabilistic methods
that aren’t
neurocomputational in nature, in order to formalize and mechanize a
form of non-logicist reasoning in
the face of uncertainty.
Interestingly enough, it is Eugene Charniak himself who can be safely
considered one of
the leading proponents of an explicit, premeditated
turn away from logic to statistical techniques. His area of
specialization is natural language processing, and whereas his
introductory textbook of 1985 gave an accurate
sense of his approach
to parsing at the time (as we have seen, write computer programs that,
given English text
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as input, ultimately infer meaning expressed in
FOL), this approach was abandoned in favor of purely statistical
approaches (Charniak 1993). At the
AI@50
conference, Charniak boldly proclaimed, in a talk tellingly entitled
“Why Natural Language Processing is Now Statistical Natural
Language Processing,” that logicist AI is
moribund, and that the
statistical approach is the only promising game in town – for
the next 50
years.[34]

The chief source of energy and debate at the conference flowed from
the clash between Charniak’s probabilistic
orientation, and the
original logicist orientation, upheld at the conference in question by
John McCarthy and
others.

AI’s use of probability theory grows out of the standard form of
this theory, which grew directly out of technical
philosophy and
logic. This form will be familiar to many philosophers, but
let’s review it quickly now, in order
to set a firm stage for
making points about the new probabilistic techniques that have
energized AI.

Just as in the case of FOL, in probability theory we are concerned
with declarative statements, or propositions,
to which degrees
of belief are applied; we can thus say that both logicist and
probabilistic approaches are
symbolic in nature. Both approaches also
agree that statements can either be true or false in the world. In
building agents, a simplistic logic-based approach requires agents to
know the truth-value of all possible
statements. This is not
realistic, as an agent may not know the truth-value of some
proposition  due to either
ignorance, non-determinism in the
physical world, or just plain vagueness in the meaning of the
statement. More
specifically, the fundamental proposition in
probability theory is a random variable, which can be conceived
of
as an aspect of the world whose status is initially unknown to the
agent. We usually capitalize the names of
random variables, though we
reserve  as such names as well. For example, in a
particular murder
investigation centered on whether or not Mr. Barolo
committed the crime, the random variable  might be
of
concern. The detective may be interested as well in whether or not the
murder weapon – a particular knife, let
us assume –
belongs to Barolo. In light of this, we might say that  if it does, and 

 if it doesn’t. As a
notational convenience, we can write  and 
and for these
two cases, respectively; and we can use this convention
for other variables of this type.

The kind of variables we have described so far are
 , because their  is simply
  But
we can generalize and allow
  random variables, whose values are from any
countable domain. For
example,  might be a variable
for the price of (a particular, presumably) tea in China, and its
domain might be , where each number here is in US
dollars. A third type of variable is ;
its
domain is either the reals, or some subset thereof.

We say that an atomic event is an assignment of particular
values from the appropriate domains to all the
variables composing the
(idealized) world. For example, in the simple murder investigation
world introduced
just above, we have two Boolean variables,
  and , and there are just four atomic events.
Note that
atomic events have some obvious properties. For example,
they are mutually exclusive, exhaustive, and logically
entail the
truth or falsity of every proposition. Usually not obvious to
beginning students is a fourth property,
namely, any proposition is
logically equivalent to the disjunction of all atomic events that
entail that proposition.

Prior probabilities correspond to a degree of belief accorded to a
proposition in the complete absence of any
other information. For
example, if the prior probability of Barolo’s guilt is ,
we write

or simply . It is often convenient to have a
notation allowing one to refer economically to the
probabilities of
all the possible values for a random variable. For example,
we can write

as an abbreviation for the five equations listing all the possible
prices for tea in China. We can also write

p

p,q, r,…

Guilty

Weapon = true

Weapon = false weapon ¬weapon

Boolean domain {true, f alse}.

discrete
PriceTChina

{1,2,3,4,5} continous

Guilty Weapon

0.2

P (Guilty = true) = 0.2

P(guilty) = 0.2

P (PriceTChina)

P (PriceTChina) = ⟨1,2,3,4,5⟩
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https://plato.stanford.edu/entries/artificial-intelligence/notes.html#note-34
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In addition, as further convenient notation, we can write  to denote the probabilities
of all
combinations of values of the relevant set of random variables.
This is referred to as the joint probability
distribution of
  and . The full joint probability
distribution covers the distribution for all the
random variables used
to describe a world. Given our simple murder world, we have 20 atomic
events summed
up in the equation

The final piece of the basic language of probability theory
corresponds to conditional probabilities. Where  and

are any propositions, the relevant expression is , which can be interpreted as “the probability of
 ,

given that all we know is .” For example,

says that if the murder weapon belongs to Barolo, and no other
information is available, the probability that
Barolo is guilty is


Andrei Kolmogorov showed how to construct probability theory from
three axioms that make use of the
machinery now introduced, viz.,

1. All probabilities fall between  and  I.e., .
2. Valid (in the traditional logicist sense) propositions have a
probability of ; unsatisfiable (in the traditional

logicist
sense) propositions have a probability of .
3. 

These axioms are clearly at bottom logicist. The remainder of
probability theory can be erected from this
foundation (conditional
probabilities are easily defined in terms of prior probabilities). We
can thus say that logic
is in some fundamental sense still being used
to characterize the set of beliefs that a rational agent can have. But
where does probabilistic inference enter the picture on this
account, since traditional deduction is not used for
inference in
probability theory?

Probabilistic inference consists in computing, from observed evidence
expressed in terms of probability theory,
posterior probabilities of
propositions of interest. For a good long while, there have been
algorithms for carrying
out such computation. These algorithms precede
the resurgence of probabilistic techniques in the 1990s.
(Chapter 13
of AIMA presents a number of them.) For example, given the
Kolmogorov axioms, here is a
straightforward way of computing the
probability of any proposition, using the full joint distribution
giving the
probabilities of all atomic events: Where  is some
proposition, let  be the disjunction of all atomic events
in
which  holds. Since the probability of a proposition (i.e.,
 ) is equal to the sum of the probabilities of the
atomic
events in which it holds, we have an equation that provides a method
for computing the probability of
any proposition , viz.,

Unfortunately, there were two serious problems infecting this original
probabilistic approach: One, the
processing in question needed to take
place over paralyzingly large amounts of information (enumeration over
the entire distribution is required). And two, the expressivity of the
approach was merely propositional. (It was
by the way the philosopher
Hilary Putnam (1963) who pointed out that there was a price to pay in
moving to the
first-order level. The issue is not discussed herein.)
Everything changed with the advent of a new formalism that
marks the
marriage of probabilism and graph theory: Bayesian networks
(also called belief nets). The pivotal
text was (Pearl 1988).
For a more detailed discussion, see the

Supplement on Bayesian Networks.
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Before concluding this section, it is probably worth noting that, from
the standpoint of philosophy, a situation
such as the murder
investigation we have exploited above would often be analyzed into
arguments, and strength
factors, not into numbers to be
crunched by purely arithmetical procedures. For example, in the
epistemology of
Roderick Chisholm, as presented his Theory of
Knowledge (1966, 1977), Detective Holmes might classify a
proposition like Barolo committed the murder. as
counterbalanced if he was unable to find a compelling
argument
either way, or perhaps probable if the murder weapon turned out
to belong to Barolo. Such categories
cannot be found on a continuum
from 0 to 1, and they are used in articulating arguments for or
against Barolo’s
guilt. Argument-based approaches to uncertain
and defeasible reasoning are virtually non-existent in AI. One
exception is Pollock’s approach, covered below. This approach is
Chisholmian in nature.

It should also be noted that there have been well-established
formalisms for dealing with probabilistic reasoning
as an instance of
logic-based reasoning. E.g., the activity a researcher in
probabilistic reasoning undertakes when
she proves a theorem 
about their domain (e.g. any theorem in (Pearl 1988)) is purely within
the realm of
traditional logic. Readers interested in logic-flavored
approaches to probabilistic reasoning can consult (Adams
1996,
Hailperin 1996 & 2010, Halpern 1998). Formalisms marrying
probability theory, induction and deductive
reasoning, placing them on
an equal footing, have been on the rise, with Markov logic (Richardson
and
Domingos 2006) being salient among these approaches.

Probabilistic Machine Learning

Machine learning, in the sense given
above,
has been associated with probabilistic techniques. Probabilistic
techniques have been associated with both the learning of functions
(e.g. Naive Bayes classification) and the
modeling of theoretical
properties of learning algorithms. For example, a standard
reformulation of supervised
learning casts it as a Bayesian
problem. Assume that we are looking at recognizing digits
  from a given
image. One way to cast this problem is to ask
what the probability that the hypothesis : “the digit
is ” is true
given the image  from a sensor. Bayes
theorem gives us:

 and  can be estimated from the given
training dataset. Then the hypothesis with the highest
posterior
probability is then given as the answer and is given by:
  In
addition to
probabilistic methods being used to build algorithms,
probability theory has also been used to analyze algorithms
which
might not have an overt probabilistic or logical formulation. For
example, one of the central classes of
meta-theorems in learning,
probably approximately correct (PAC) theorems, are cast in
terms of lower bounds
of the probability that the mismatch between the
induced/learnt fL function and the true function
fT being less
than a certain amount, given that the
learnt function fL works well for a certain number
of cases (see Chapter 18,
AIMA).

5. AI in the Wild
From at least its modern inception, AI has always been connected to
gadgets, often ones produced by
corporations, and it would be remiss
of us not to say a few words about this phenomenon. While there have
been
a large number of commercial in-the-wild success stories for AI
and its sister fields, such as optimization and
decision-making, some
applications are more visible and have been thoroughly battle-tested
in the wild. In 2014,
one of the most visible such domains (one in
which AI has been strikingly successful) is information retrieval,
incarnated as web search. Another recent success story is pattern
recognition. The state-of-the-art in applied
pattern recognition
(e.g., fingerprint/face verification, speech recognition, and
handwriting recognition) is robust
enough to allow
“high-stakes” deployment outside the laboratory. As of mid
2018, several corporations and
research laboratories have begun
testing autonomous vehicles on public roads, with even a handful of
jurisdictions making self-driving cars legal to operate. For example,
Google’s autonomous cars have navigated
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hundreds of thousands of
miles in California with minimal human help under non-trivial
conditions (Guizzo
2011).

Computer games provide a robust test bed for AI techniques as they can
capture important parts that might be
necessary to test an AI
technique while abstracting or removing details that might beyond the
scope of core AI
research, for example, designing better hardware or
dealing with legal issues (Laird and VanLent 2001). One
subclass of
games that has seen quite fruitful for commercial deployment of AI is
real-time strategy games. Real-
time strategy games are games in which
players manage an army given limited resources. One objective is to
constantly battle other players and reduce an opponent’s forces.
Real-time strategy games differ from strategy
games in that players
plan their actions simultaneously in real-time and do not have to take
turns playing. Such
games have a number of challenges that are
tantalizing within the grasp of the state-of-the-art. This makes such
games an attractive venue in which to deploy simple AI agents. An
overview of AI used in real-time strategy
games can be found in
(Robertson and Watson 2015).

Some other ventures in AI, despite significant success, have been only
chugging slowly and humbly along,
quietly. For instance, AI-related
methods have achieved triumphs in solving open problems in mathematics
that
have resisted any solution for decades. The most noteworthy
instance of such a problem is perhaps a proof of the
statement that
“All Robbins algebras are Boolean algebras.” This
was conjectured in the 1930s, and the proof
was finally discovered by
the Otter automatic theorem-prover in 1996 after just a few months of
effort (Kolata
1996, Wos 2013). Sister fields like formal verification
have also bloomed to the extent that it is now not too
difficult to
semi-automatically verify vital hardware/software components (Kaufmann
et al. 2000 and Chajed et
al. 2017).

Other related areas, such as (natural) language translation, still
have a long way to go, but are good enough to let
us use them under
restricted conditions. The jury is out on tasks such as machine
translation, which seems to
require both statistical methods (Lopez
2008) and symbolic methods (España-Bonet 2011). Both
methods now
have comparable but limited success in the wild. A
deployed translation system at Ford that was initially
developed for
translating manufacturing process instructions from English to other
languages initially started out
as rule-based system with Ford and
domain-specific vocabulary and language. This system then evolved to
incorporate statistical techniques along with rule-based techniques as
it gained new uses beyond translating
manuals, for example, lay users
within Ford translating their own documents (Rychtyckyj and Plesco
2012).

AI’s great achievements mentioned above so far have all been in
limited, narrow domains. This lack of any
success in the unrestricted
general case has caused a small set of researchers to break away into
what is now
called
artificial general intelligence
(Goertzel and Pennachin 2007). The stated goals of this movement
include
shifting the focus again to building artifacts that are
generally intelligent and not just capable in one narrow
domain.

6. Moral AI
Computer Ethics has been around for a long time. In this
sub-field, typically one would consider how one ought
to act in a
certain class of situations involving computer technology, where the
“one” here refers to a human
being (Moor 1985). So-called
“robot ethics” is different. In this sub-field (which goes
by names such as “moral
AI,” “ethical AI,”
“machine ethics,” “moral robots,” etc.) one is
confronted with such prospects as robots being
able to make autonomous
and weighty decisions – decisions that might or might not be
morally permissible
(Wallach & Allen 2010). If one were to attempt
to engineer a robot with a capacity for sophisticated ethical
reasoning and decision-making, one would also be doing Philosophical
AI, as that concept is characterized
elsewhere
in the present entry. There can be many different flavors of
approaches toward Moral AI. Wallach and
Allen (2010) provide a
high-level overview of the different approaches. Moral reasoning is
obviously needed in
robots that have the capability for lethal action.
Arkin (2009) provides an introduction to how we can control and
regulate machines that have the capacity for lethal behavior. Moral AI
goes beyond obviously lethal situations,
and we can have a spectrum of
moral machines. Moor (2006) provides one such spectrum of possible
moral
agents. An example of a non-lethal but ethically-charged machine
would be a lying machine. Clark (2010) uses a
computational theory
of the mind, the ability to represent and reason about other
agents, to build a lying

https://sites.google.com/site/narswang/home/agi-introduction
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machine that successfully persuades people
into believing falsehoods. Bello & Bringsjord (2013) give a
general
overview of what might be required to build a moral machine,
one of the ingredients being a theory of mind.

The most general framework for building machines that can reason
ethically consists in endowing the machines
with a moral code.
This requires that the formal framework used for reasoning by the
machine be expressive
enough to receive such codes. The field of Moral
AI, for now, is not concerned with the source or provenance of
such
codes. The source could be humans, and the machine could receive the
code directly (via explicit encoding)
or indirectly (reading). Another
possibility is that the code is inferred by the machine from a more
basic set of
laws. We assume that the robot has access to some such
code, and we then try to engineer the robot to follow that
code under
all circumstances while making sure that the moral code and its
representation do not lead to
unintended consequences. Deontic
logics are a class of formal logics that have been studied the
most for this
purpose. Abstractly, such logics are concerned mainly
with what follows from a given moral code. Engineering
then studies
the match of a given deontic logic to a moral code (i.e., is the logic
expressive enough) which has to
be balanced with the ease of
automation. Bringsjord et al. (2006) provide a blueprint for using
deontic logics to
build systems that can perform actions in accordance
with a moral code. The role deontic logics play in the
framework
offered by Bringsjord et al (which can be considered to be
representative of the field of deontic logic
for moral AI) can be best
understood as striving towards Leibniz’s dream of a universal
moral calculus:

When controversies arise, there will be no more need for a disputation
between two philosophers
than there would be between two accountants
[computistas]. It would be enough for them to pick up
their pens and
sit at their abacuses, and say to each other (perhaps having summoned
a mutual
friend): ‘Let us calculate.’

Deontic logic-based frameworks can also be used in a fashion that is
analogous to moral self-reflection. In this
mode, logic-based
verification of the robot’s internal modules can done before the
robot ventures out into the real
world. Govindarajulu and Bringsjord
(2015) present an approach, drawing from formal-program
verification,
in which a deontic-logic based system could be used
to verify that a robot acts in a certain ethically-sanctioned
manner
under certain conditions. Since formal-verification approaches can be
used to assert statements about an
infinite number of situations and
conditions, such approaches might be preferred to having the robot
roam around
in an ethically-charged test environment and make a finite
set of decisions that are then judged for their ethical
correctness.
More recently, Govindarajulu and Bringsjord (2017) use a deontic logic
to present a computational
model of the
Doctrine of Double Effect,
an ethical principle for moral dilemmas that has been studied
empirically and analyzed extensively by
philosophers.[35]
The principle is usually presented and motivated via
dilemmas using
trolleys and was first presented in this fashion by Foot (1967).

While there has been substantial theoretical and philosophical work,
the field of machine ethics is still in its
infancy. There has been
some embryonic work in building ethical machines. One recent such
example would be
Pereira and Saptawijaya (2016) who use logic
programming and base their work in machine ethics on the ethical
theory known as contractualism, set out by Scanlon (1982). And
what about the future? Since artificial agents
are bound to get
smarter and smarter, and to have more and more autonomy and
responsibility, robot ethics is
almost certainly going to grow in
importance. This endeavor might not be a straightforward application
of
classical ethics. For example, experimental results suggest that
humans hold robots to different ethical standards
than they expect
from humans under similar conditions (Malle et al.
2015).[36]

7. Philosophical AI
Notice that the heading for this section isn’t Philosophy
of AI. We’ll get to that category momentarily. (For now
it can be identified with the attempt to answer such questions as
whether artificial agents created in AI can ever
reach the full
heights of human intelligence.) Philosophical AI is AI, not
philosophy; but it’s AI rooted in and
flowing from, philosophy.
For example, one could engage, using the tools and techniques of
philosophy, a
paradox, work out a proposed solution, and then proceed
to a step that is surely optional for philosophers:
expressing the
solution in terms that can be translated into a computer program that,
when executed, allows an
artificial agent to surmount concrete
instances of the original
paradox.[37]
Before we ostensively characterize

https://plato.stanford.edu/entries/double-effect/
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Philosophical AI of this sort
courtesy of a particular research program, let us consider first the
view that AI is in
fact simply philosophy, or a part thereof.

Daniel Dennett (1979) has famously claimed not just that there are
parts of AI intimately bound up with
philosophy, but that AI
is philosophy (and psychology, at least of the cognitive
sort). (He has made a parallel
claim about Artificial Life (Dennett
1998)). This view will turn out to be incorrect, but the reasons why
it’s
wrong will prove illuminating, and our discussion will pave
the way for a discussion of Philosophical AI.

What does Dennett say, exactly? This:

I want to claim that AI is better viewed as sharing with traditional
epistemology the status of being a
most general, most abstract asking
of the top-down question: how is knowledge possible? (Dennett
1979,
60)

Elsewhere he says his view is that AI should be viewed “as a
most abstract inquiry into the possibility of
intelligence or
knowledge” (Dennett 1979, 64).

In short, Dennett holds that AI is the attempt to explain
intelligence, not by studying the brain in the hopes of
identifying
components to which cognition can be reduced, and not by engineering
small information-processing
units from which one can build in
bottom-up fashion to high-level cognitive processes, but rather by
– and this is
why he says the approach is top-down
– designing and implementing abstract algorithms that capture
cognition.
Leaving aside the fact that, at least starting in the early
1980s, AI includes an approach that is in some sense
bottom-up (see
the neurocomputational paradigm discussed above, in
Non-Logicist AI: A Summary;
and see,
specifically, Granger’s (2004a, 2004b) work,
hyperlinked in text immediately above, a specific counterexample),
a
fatal flaw infects Dennett’s view. Dennett sees the potential
flaw, as reflected in:

It has seemed to some philosophers that AI cannot plausibly be so
construed because it takes on an
additional burden: it restricts
itself to mechanistic solutions, and hence its domain is not
the Kantian
domain of all possible modes of intelligence, but just all
possible mechanistically realizable modes
of intelligence. This, it is
claimed, would beg the question against vitalists, dualists, and other
anti-
mechanists. (Dennett 1979, 61)

Dennett has a ready answer to this objection. He writes:

But … the mechanism requirement of AI is not an additional
constraint of any moment, for if
psychology is possible at all, and if
Church’s thesis is true, the constraint of mechanism is no more
severe than the constraint against begging the question in psychology,
and who would wish to evade
that? (Dennett 1979, 61)

Unfortunately, this is acutely problematic; and examination of the
problems throws light on the nature of AI.

First, insofar as philosophy and psychology are concerned with the
nature of mind, they aren’t in the least
trammeled by the
presupposition that mentation consists in computation. AI, at least of
the “Strong” variety
(we’ll discuss
“Strong” versus “Weak” AI
below)
is indeed an attempt to substantiate, through engineering
certain
impressive artifacts, the thesis that intelligence is at bottom
computational (at the level of Turing
machines and their equivalents,
e.g., Register machines). So there is a philosophical claim, for sure.
But this
doesn’t make AI philosophy, any more than some of the
deeper, more aggressive claims of some physicists (e.g.,
that the
universe is ultimately digital in nature)
make their field philosophy. Philosophy of physics certainly
entertains the proposition that the physical universe can be
perfectly modeled in digital terms (in a series of
cellular automata,
e.g.), but of course philosophy of physics can’t be
identified with this doctrine.

Second, we now know well (and those familiar with the relevant formal
terrain knew at the time of Dennett’s
writing) that information
processing can exceed standard computation, that is, can exceed
computation at and
below the level of what a Turing machine can muster
(Turing-computation, we shall say). (Such information
processing is known as hypercomputation, a term coined by
philosopher Jack Copeland, who has himself defined
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such machines
(e.g., Copeland 1998). The first machines capable of hypercomputation
were trial-and-error
machines, introduced in the same famous
issue of the Journal of Symbolic Logic (Gold 1965; Putnam
1965). A
new hypercomputer is the infinite time Turing machine
(Hamkins & Lewis 2000).) Dennett’s appeal to Church’s
thesis thus flies in the face of the mathematical facts: some
varieties of information processing exceed standard
computation (or
Turing-computation). Church’s thesis, or more precisely, the
Church-Turing thesis, is the view
that a function  is effectively
computable if and only if  is Turing-computable (i.e., some
Turing machine can
compute ). Thus, this thesis has nothing to
say about information processing that is more demanding than what
a
Turing machine can achieve. (Put another way, there is no
counter-example to CTT to be automatically found
in an
information-processing device capable of feats beyond the reach of
TMs.) For all philosophy and
psychology know, intelligence, even if
tied to information processing, exceeds what is Turing-computational
or
Turing-mechanical.[38]
This is especially true because philosophy and psychology, unlike AI,
are in no way
fundamentally charged with engineering artifacts, which
makes the physical realizability of hypercomputation
irrelevant from
their perspectives. Therefore, contra Dennett, to consider AI
as psychology or philosophy is to
commit a serious error, precisely
because so doing would box these fields into only a speck of the
entire space of
functions from the natural numbers (including tuples
therefrom) to the natural numbers. (Only a tiny portion of
the
functions in this space are Turing-computable.) AI is without question
much, much narrower than this pair of
fields. Of course, it’s
possible that AI could be replaced by a field devoted not to building
computational artifacts
by writing computer programs and running them
on embodied Turing machines. But this new field, by definition,
would
not be AI. Our exploration of AIMA and other textbooks provide
direct empirical confirmation of this.

Third, most AI researchers and developers, in point of fact, are
simply concerned with building useful, profitable
artifacts, and
don’t spend much time reflecting upon the kinds of abstract
definitions of intelligence explored in
this entry (e.g.,
What Exactly is AI?).

Though AI isn’t philosophy, there are certainly ways of doing
real implementation-focussed AI of the highest
caliber that are
intimately bound up with philosophy. The best way to demonstrate this
is to simply present such
research and development, or at least a
representative example thereof. While there have been many examples of
such work, the most prominent example in AI is John Pollock’s
OSCAR project, which stretched over a
considerable portion of his
lifetime. For a detailed presentation and further discussion, see
the

Supplement on the OSCAR Project.

It’s important to note at this juncture that the OSCAR project,
and the information processing that underlies it,
are without question
at once philosophy and technical AI. Given that the work in
question has appeared in the
pages of Artificial Intelligence,
a first-rank journal devoted to that field, and not to philosophy,
this is undeniable
(see, e.g., Pollock 2001, 1992). This point is
important because while it’s certainly appropriate, in the
present
venue, to emphasize connections between AI and philosophy,
some readers may suspect that this emphasis is
contrived: they may
suspect that the truth of the matter is that page after page of AI
journals are filled with
narrow, technical content far from
philosophy. Many such papers do exist. But we must distinguish between
writings designed to present the nature of AI, and its core methods
and goals, versus writings designed to present
progress on specific
technical issues.

Writings in the latter category are more often than not quite narrow,
but, as the example of Pollock shows,
sometimes these specific issues
are inextricably linked to philosophy. And of course Pollock’s
work is a
representative example (albeit the most substantive one).
One could just as easily have selected work by folks
who don’t
happen to also produce straight philosophy. For example, for an entire
book written within the
confines of AI and computer science, but which
is epistemic logic in action in many ways, suitable for use in
seminars on that topic, see (Fagin et al. 2004). (It is hard to find
technical work that isn’t bound up with
philosophy in some
direct way. E.g., AI research on learning is all intimately bound up
with philosophical
treatments of induction, of how genuinely new
concepts not simply defined in terms of prior ones can be learned.
One
possible partial answer offered by AI is inductive logic
programming, discussed in Chapter 19 of AIMA.)

What of writings in the former category? Writings in this category,
while by definition in AI venues, not
philosophy ones, are nonetheless
philosophical. Most textbooks include plenty of material that falls
into this
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latter category, and hence they include discussion of the
philosophical nature of AI (e.g., that AI is aimed at
building
artificial intelligences, and that’s why, after all, it’s
called ‘AI’).

8. Philosophy of Artificial Intelligence

8.1 “Strong” versus “Weak” AI

Recall that we earlier discussed proposed definitions of AI, and
recall specifically that these proposals were
couched in terms of the
goals of the field. We can follow this pattern here: We can
distinguish between “Strong”
and “Weak” AI by
taking note of the different goals that these two versions of AI
strive to reach. “Strong” AI
seeks to create artificial
persons: machines that have all the mental powers we have, including
phenomenal
consciousness. “Weak” AI, on the other hand,
seeks to build information-processing machines that appear to
have the full mental repertoire of human persons (Searle 1997).
“Weak” AI can also be defined as the form of AI
that aims
at a system able to pass not just the Turing Test (again, abbreviated
as TT), but the Total Turing Test
(Harnad 1991). In TTT, a
machine must muster more than linguistic indistinguishability: it must
pass for a
human in all behaviors – throwing a baseball, eating,
teaching a class, etc.

It would certainly seem to be exceedingly difficult for philosophers
to overthrow “Weak” AI (Bringsjord and
Xiao 2000). After
all, what philosophical reason stands in the way of AI
producing artifacts that appear to be
animals or even humans?
However, some philosophers have aimed to do in “Strong”
AI, and we turn now to the
most prominent case in point.

8.2 The Chinese Room Argument Against “Strong AI”

Without question, the most famous argument in the philosophy of AI is
John Searle’s (1980) Chinese Room
Argument (CRA), designed to
overthrow “Strong” AI. We present a quick summary here and
a “report from the
trenches” as to how AI practitioners
regard the argument. Readers wanting to further study CRA will find an
excellent next step in the entry on
the Chinese Room Argument
and (Bishop & Preston 2002).

CRA is based on a thought-experiment in which Searle himself stars. He
is inside a room; outside the room are
native Chinese speakers who
don’t know that Searle is inside it. Searle-in-the-box, like
Searle-in-real-life,
doesn’t know any Chinese, but is fluent in
English. The Chinese speakers send cards into the room through a
slot;
on these cards are written questions in Chinese. The box, courtesy of
Searle’s secret work therein, returns
cards to the native
Chinese speakers as output. Searle’s output is produced by
consulting a rulebook: this book is
a lookup table that tells him what
Chinese to produce based on what is sent in. To Searle, the Chinese is
all just a
bunch of – to use Searle’s language –
squiggle-squoggles. The following schematic picture sums up the
situation.
The labels should be obvious.  denotes the outside
observers, in this case the Chinese speakers. Input is
denoted by
  and output by . As you can see, there is an icon for the
rulebook, and Searle himself is denoted by 

.

The Chinese Room, Schematic View

O
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Now, what is the argument based on this thought-experiment? Even if
you’ve never heard of CRA before, you
doubtless can see the
basic idea: that Searle (in the box) is supposed to be everything a
computer can be, and
because he doesn’t understand Chinese, no
computer could have such understanding. Searle is mindlessly
moving
squiggle-squoggles around, and (according to the argument)
that’s all computers do,
fundamentally.[39]

Where does CRA stand today? As we’ve already indicated, the
argument would still seem to be alive and well;
witness (Bishop &
Preston 2002). However, there is little doubt that at least among AI
practitioners, CRA is
generally rejected. (This is of course
thoroughly unsurprising.) Among these practitioners, the philosopher
who
has offered the most formidable response out of AI itself is
Rapaport (1988), who argues that while AI systems
are indeed
syntactic, the right syntax can constitute semantics. It should be
said that a common attitude among
proponents of “Strong”
AI is that CRA is not only unsound, but silly, based as it is on a
fanciful story (CR) far
removed from the practice of AI
– practice which is year by year moving ineluctably toward
sophisticated robots
that will once and for all silence CRA and its
proponents. For example, John Pollock (as we’ve noted,
philosopher and practitioner of AI) writes:

Once [my intelligent system] OSCAR is fully functional, the argument
from analogy will lead us
inexorably to attribute thoughts and
feelings to OSCAR with precisely the same credentials with
which we
attribute them to human beings. Philosophical arguments to the
contrary will be passé.
(Pollock 1995, p. 6)

To wrap up discussion of CRA, we make two quick points, to wit:

1. Despite the confidence of the likes of Pollock about the eventual
irrelevance of CRA in the face of the
eventual human-level prowess of
OSCAR (and, by extension, any number of other still-improving AI
systems), the brute fact is that deeply semantic natural-language
processing (NLP) is rarely even pursued
these days, so proponents of
CRA are certainly not the ones feeling some discomfort in light of the
current
state of AI. In short, Searle would rightly point to any of
the success stories of AI, including the Watson
system we have
discussed, and still proclaim that understanding is nowhere to be
found – and he would be
well within his philosophical rights in
saying this.

2. It would appear that the CRA is bubbling back to a level of
engagement not seen for a number of years, in
light of the empirical
fact that certain thinkers are now issuing explicit warnings to the
effect that future
conscious, malevolent machines may well wish to do
in our species. In reply, Searle (2014) points out that
since CRA is
sound, there can’t be conscious machines; and if there
can’t be conscious machines, there
can’t be malevolent
machines that wish anything. We return to this at the end of our
entry; the chief point
here is that CRA continues to be quite
relevant, and indeed we suspect that Searle’s basis for
have-no-fear
will be taken up energetically by not only philosophers,
but AI experts, futurists, lawyers, and policy-
makers.

Readers may wonder if there are philosophical debates that AI
researchers engage in, in the course of working in
their field (as
opposed to when they might attend a philosophy conference). Surely, AI
researchers have
philosophical discussions amongst themselves, right?

Generally, one finds that AI researchers do discuss among themselves
topics in philosophy of AI, and these
topics are usually the very same
ones that occupy philosophers of AI. However, the attitude reflected
in the quote
from Pollock immediately above is by far the dominant
one. That is, in general, the attitude of AI researchers is
that
philosophizing is sometimes fun, but the upward march of AI
engineering cannot be stopped, will not fail,
and will eventually
render such philosophizing otiose.

We will return to the issue of the future of AI in the
final section
of this entry.

8.3 The Gödelian Argument Against “Strong AI”

Four decades ago, J.R. Lucas (1964) argued that Gödel’s
first incompleteness theorem entails that no machine
can ever reach
human-level intelligence. His argument has not proved to be
compelling, but Lucas initiated a
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debate that has produced more
formidable arguments. One of Lucas’ indefatigable defenders is
the physicist
Roger Penrose, whose first attempt to vindicate Lucas
was a Gödelian attack on “Strong” AI articulated in
his
The Emperor’s New Mind (1989). This first attempt
fell short, and Penrose published a more elaborate and more
fastidious
Gödelian case, expressed in Chapters 2 and 3 of his Shadows of
the Mind (1994).

In light of the fact that readers can turn to the
entry on the Gödel’s Incompleteness Theorems,
a full review here
is not needed. Instead, readers will be given a
decent sense of the argument by turning to an online paper in
which
Penrose, writing in response to critics (e.g., the philosopher David
Chalmers, the logician Solomon
Feferman, and the computer scientist
Drew McDermott) of his Shadows of the Mind, distills the
argument to a
couple of
paragraphs.[40]
Indeed, in this paper Penrose gives what he takes to be the perfected
version of the core
Gödelian case given in SOTM. Here is
this version, verbatim:

We try to suppose that the totality of methods of (unassailable)
mathematical reasoning that are in
principle humanly accessible can be
encapsulated in some (not necessarily computational) sound
formal
system . A human mathematician, if presented with , could
argue as follows (bearing in
mind that the phrase “I am
 ” is merely a shorthand for “  encapsulates all
the humanly accessible
methods of mathematical proof”):

(A) “Though I don’t know that I necessarily am , I
conclude that if I were, then the
system  would have to be sound
and, more to the point,  would have to be sound,
where  is
  supplemented by the further assertion “I am .”
I perceive that it follows
from the assumption that I am  that
the Gödel statement  would have to be true
and,
furthermore, that it would not be a consequence of . But I have
just perceived
that “If I happened to be , then 
would have to be true,” and perceptions of this
nature would be
precisely what  is supposed to achieve. Since I am therefore
capable
of perceiving something beyond the powers of , I deduce
that I cannot be  after all.
Moreover, this applies to any other
(Gödelizable) system, in place of .” (Penrose
1996,
3.2)

Does this argument succeed? A firm answer to this question is not
appropriate to seek in the present entry.
Interested readers are
encouraged to consult four full-scale treatments of the argument
(LaForte et. al 1998;
Bringsjord and Xiao 2000; Shapiro 2003; Bowie
1982).

8.4 Additional Topics and Readings in Philosophy of AI

In addition to the Gödelian and Searlean arguments covered
briefly above, a third attack on “Strong” AI (of the
symbolic variety) has been widely discussed (though with the rise of
statistical machine learning has come a
corresponding decrease in the
attention paid to it), namely, one given by the philosopher Hubert
Dreyfus (1972,
1992), some incarnations of which have been
co-articulated with his brother, Stuart Dreyfus (1987), a computer
scientist. Put crudely, the core idea in this attack is that human
expertise is not based on the explicit,
disembodied, mechanical
manipulation of symbolic information (such as formulae in some logic,
or probabilities
in some Bayesian network), and that AI’s
efforts to build machines with such expertise are doomed if based on
the symbolic paradigm. The genesis of the Dreyfusian attack was a
belief that the critique of (if you will)
symbol-based philosophy
(e.g., philosophy in the logic-based, rationalist tradition, as
opposed to what is called
the Continental tradition) from such
thinkers as Heidegger and Merleau-Ponty could be made against the
rationalist tradition in AI. After further reading and study of
Dreyfus’ writings, readers may judge whether this
critique is
compelling, in an information-driven world increasingly managed by
intelligent agents that carry out
symbolic reasoning (albeit not even
close to the human level).

For readers interested in exploring philosophy of AI beyond what Jim
Moor (in a recent address – “The Next
Fifty Years of AI:
Future Scientific Research vs. Past Philosophical Criticisms”
– as the 2006 Barwise Award
winner at the annual eastern
American Philosophical Association meeting) has called the “the
big three”
criticisms of AI, there is no shortage of additional
material, much of it available on the Web. The last chapter of
AIMA provides a compressed overview of some additional
arguments against “Strong” AI, and is in general not a
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bad
next step. Needless to say, Philosophy of AI today involves much more
than the three well-known arguments
discussed above, and, inevitably,
Philosophy of AI tomorrow will include new debates and problems we
can’t
see now. Because machines, inevitably, will get smarter
and smarter (regardless of just how smart they get),
Philosophy of AI, pure and simple, is a growth industry. With every
human activity that machines match, the
“big” questions
will only attract more attention.

9. The Future
If past predictions are any indication, the only thing we know today
about tomorrow’s science and technology is
that it will be
radically different than whatever we predict it will be like.
Arguably, in the case of AI, we may also
specifically know today that
progress will be much slower than what most expect. After all, at the
1956 kickoff
conference (discussed at the start of this entry), Herb
Simon predicted that thinking machines able to match the
human mind
were “just around the corner” (for the relevant quotes and
informative discussion, see the first
chapter of AIMA). As it
turned out, the new century would arrive without a single machine able
to converse at
even the toddler level. (Recall that when it comes to
the building of machines capable of displaying human-level
intelligence, Descartes, not Turing, seems today to be the better
prophet.) Nonetheless, astonishing though it may
be, serious thinkers
in the late 20th century have continued to issue incredibly optimistic
predictions regarding
the progress of AI. For example, Hans Moravec
(1999), in his Robot: Mere Machine to Transcendent Mind,
informs us that because the speed of computer hardware doubles every
18 months (in accordance with Moore’s
Law, which has
apparently held in the past), “fourth generation”
robots will soon enough exceed humans in all
respects, from running
companies to writing novels. These robots, so the story goes, will
evolve to such lofty
cognitive heights that we will stand to them as
single-cell organisms stand to us
today.[41]

Moravec is by no means singularly Pollyannaish: Many others in AI
predict the same sensational future
unfolding on about the same rapid
schedule. In fact, at the aforementioned AI@50 conference, Jim Moor
posed
the question “Will human-level AI be achieved within the
next 50 years?” to five thinkers who attended the
original 1956
conference: John McCarthy, Marvin Minsky, Oliver Selfridge, Ray
Solomonoff, and Trenchard
Moore. McCarthy and Minsky gave firm,
unhesitating affirmatives, and Solomonoff seemed to suggest that AI
provided the one ray of hope in the face of fact that our species
seems bent on destroying itself. (Selfridge’s reply
was a bit
cryptic. Moore returned a firm, unambiguous negative, and declared
that once his computer is smart
enough to interact with him
conversationally about mathematical problems, he might take this whole
enterprise
more seriously.) It is left to the reader to judge the
accuracy of such risky predictions as have been given by
Moravec,
McCarthy, and
Minsky.[42]

The judgment of the reader in this regard ought to factor in the
stunning resurgence, very recently, of serious
reflection on what is
known as “The Singularity,” (denoted by us simply as
S) the future point at which artificial
intelligence exceeds
human intelligence, whereupon immediately thereafter (as the story
goes) the machines
make themselves rapidly smarter and smarter and
smarter, reaching a superhuman level of intelligence that, stuck
as we
are in the mud of our limited mentation, we can’t fathom. For
extensive, balanced analysis of S, see Eden
et al. (2013).

Readers unfamiliar with the literature on S may be quite
surprised to learn the degree to which, among learned
folks, this
hypothetical event is not only taken seriously, but has in fact become
a target for extensive and
frequent philosophizing [for a mordant tour
of the recent thought in question, see Floridi (2015)]. What
arguments support the belief that S is in our future?
There are two main arguments at this point: the familiar
hardware-based one [championed by Moravec, as noted above, and again
more recently by Kurzweil (2006)];
and the – as far as we know
– original argument given by mathematician I. J. Good (1965). In
addition, there is a
recent and related doomsayer argument advanced by
Bostrom (2014), which seems to presuppose that S will
occur.
Good’s argument, nicely amplified and adjusted by Chalmers
(2010), who affirms the tidied-up version of
the argument, runs as
follows:

Premise 1: There will be AI (created by HI and such that AI
= HI).
Premise 2: If there is AI, there will be AI  (created
by AI).+
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Premise 3: If there is AI , there will be AI 
(created by AI ).
Conclusion: There will be AI  (= S will
occur).

In this argument, ‘AI’ is artificial intelligence at the
level of, and created by, human persons, ‘AI ’
artificial
intelligence above the level of human persons, and
‘AI ’ super-intelligence constitutive of S.
The key process
is presumably the creation of one class of
machine by another. We have added for convenience ‘HI’ for
human
intelligence; the central idea is then: HI will create AI, the
latter at the same level of intelligence as the former;
AI will create
AI ; AI  will create AI ; with the ascension
proceeding perhaps forever, but at any rate
proceeding long enough for
us to be as ants outstripped by gods.

The argument certainly appears to be formally valid. Are its three
premises true? Taking up such a question
would fling us far beyond the
scope of this entry. We point out only that the concept of one class
of machines
creating another, more powerful class of machines is not a
transparent one, and neither Good nor Chalmers
provides a rigorous
account of the concept, which is ripe for philosophical analysis. (As
to mathematical
analysis, some exists, of course. It is for example
well-known that a computing machine at level  cannot
possibly
create another machine at a higher level . For instance, a
linear-bounded automaton can’t create a
Turing machine.)

The Good-Chalmers argument has a rather clinical air about it; the
argument doesn’t say anything regarding
whether machines in
the AI  category will be benign, malicious, or munificent.
Many others gladly fill this gap
with dark, dark pessimism. The
locus classicus here is without question a widely read paper by
Bill Joy (2000):
“Why The Future Doesn’t Need Us.”
Joy believes that the human race is doomed, in no small part because
it’s
busy building smart machines. He writes:

The 21st-century technologies – genetics, nanotechnology, and
robotics (GNR) – are so powerful
that they can spawn whole new
classes of accidents and abuses. Most dangerously, for the first time,
these accidents and abuses are widely within the reach of individuals
or small groups. They will not
require large facilities or rare raw
materials. Knowledge alone will enable the use of them.

Thus we have the possibility not just of weapons of mass destruction
but of knowledge-enabled
mass destruction (KMD), this destructiveness
hugely amplified by the power of self-replication.

I think it is no exaggeration to say we are on the cusp of the further
perfection of extreme evil, an
evil whose possibility spreads well
beyond that which weapons of mass destruction bequeathed to
the
nation-states, on to a surprising and terrible empowerment of extreme
individuals.[43]

Philosophers would be most interested in arguments for this
view. What are Joy’s? Well, no small reason for the
attention
lavished on his paper is that, like Raymond Kurzweil (2000), Joy
relies heavily on an argument given
by none other than the Unabomber
(Theodore Kaczynski). The idea is that, assuming we succeed in
building
intelligent machines, we will have them do most (if not all)
work for us. If we further allow the machines to
make decisions for us
– even if we retain oversight over the machines –, we will
eventually depend on them to
the point where we must simply accept
their decisions. But even if we don’t allow the machines to make
decisions, the control of such machines is likely to be held by a
small elite who will view the rest of humanity as
unnecessary –
since the machines can do any needed work (Joy 2000).

This isn’t the place to assess this argument. (Having said that,
the pattern pushed by the Unabomber and his
supporters certainly
appears to be flatly
invalid.[44])
In fact, many readers will doubtless feel that no such place
exists
or will exist, because the reasoning here is amateurish. So then, what
about the reasoning of professional
philosophers on the matter?

Bostrom has recently painted an exceedingly dark picture of a possible
future. He points out that the “first
superintelligence”
could have the capability

to shape the future of Earth-originating life, could easily have
non-anthropomorphic final goals, and
would likely have instrumental
reasons to pursue open-ended resource acquisition. If we now reflect
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that human beings consist of useful resources (such as conveniently
located atoms) and that we
depend on many more local resources, we can
see that the outcome could easily be one in which
humanity quickly
becomes extinct. (Bostrom 2014, p. 416)

Clearly, the most vulnerable premise in this sort of argument
is that the “first superintelligence” will arrive
indeed
arrive. Here perhaps the Good-Chalmers argument provides a basis.

Searle (2014) thinks Bostrom’s book is misguided and
fundamentally mistaken, and that we needn’t worry. His
rationale
is dirt-simple: Machines aren’t conscious; Bostrom is alarmed at
the prospect of malicious machines
who do us in; a malicious machine
is by definition a conscious machine; ergo, Bostrom’s argument
doesn’t work.
Searle writes:

If the computer can fly airplanes, drive cars, and win at chess, who
cares if it is totally
nonconscious? But if we are worried about a
maliciously motivated superintelligence destroying us,
then it is
important that the malicious motivation should be real. Without
consciousness, there is no
possibiity of its being real.

The positively remarkable thing here, it seems to us, is that Searle
appears to be unaware of the brute fact that
most AI engineers are
perfectly content to build machines on the basis of the AIMA
view of AI we presented and
explained above: the view according to
which machines simply map percepts to actions. On this view, it
doesn’t
matter whether the machine really has desires;
what matters is whether it acts suitably on the basis of how AI
scientists engineer formal correlates to desire. An
autonomous machine with overwhelming destructive power
that
non-consciously “decides” to kill doesn’t become
just a nuisance because genuine, human-level, subjective
desire is
absent from the machine. If an AI can play the game of chess, and the
game of Jeopardy!, it can
certainly play the game of war. Just
as it does little good for a human loser to point out that the
victorious
machine in a game of chess isn’t conscious, it will
do little good for humans being killed by machines to point
out that
these machines aren’t conscious. (It is interesting to note that
the genesis of Joy’s paper was an informal
conversation with
John Searle and Raymond Kurzweil. According to Joy, Searle
didn’t think there was much to
worry about, since he was (and
is) quite confident that tomorrow’s robots can’t be
conscious.[45])

There are some things we can safely say about tomorrow.
Certainly, barring some cataclysmic events (nuclear or
biological
warfare, global economic depression, a meteorite smashing into Earth,
etc.), we now know that AI
will succeed in producing artificial
animals. Since even some natural animals (mules, e.g.) can be
easily trained
to work for humans, it stands to reason that artificial
animals, designed from scratch with our purposes in mind,
will be
deployed to work for us. In fact, many jobs currently done by humans
will certainly be done by
appropriately programmed artificial animals.
To pick an arbitrary example, it is difficult to believe that
commercial drivers won’t be artificial in the future. (Indeed,
Daimler is already running commercials in which
they tout the ability
of their automobiles to drive “autonomously,” allowing
human occupants of these vehicles to
ignore the road and read.) Other
examples would include: cleaners, mail carriers, clerical workers,
military
scouts, surgeons, and pilots. (As to cleaners, probably a
significant number of readers, at this very moment, have
robots from
iRobot cleaning the carpets in their homes.) It is hard to see how
such jobs are inseparably bound up
with the attributes often taken to
be at the core of personhood – attributes that would be the most
difficult for AI
to
replicate.[46]

Andy Clark (2003) has another prediction: Humans will gradually
become, at least to an appreciable degree,
cyborgs, courtesy of
artificial limbs and sense organs, and implants. The main driver of
this trend will be that
while standalone AIs are often desirable, they
are hard to engineer when the desired level of intelligence is high.
But to let humans “pilot” less intelligent machines is a
good deal easier, and still very attractive for concrete
reasons.
Another related prediction is that AI would play the role of a
cognitive prosthesis for humans (Ford et
al. 1997; Hoffman et al.
2001). The prosthesis view sees AI as a “great equalizer”
that would lead to less
stratification in society, perhaps similar to
how the Hindu-Arabic numeral system made arithmetic available to
the
masses, and to how the Guttenberg press contributed to literacy
becoming more universal.
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Even if the argument is formally invalid, it leaves us with a question
– the cornerstone question about AI and the
future: Will AI
produce artificial creatures that replicate and exceed human cognition
(as Kurzweil and Joy
believe)? Or is this merely an interesting
supposition?

This is a question not just for scientists and engineers; it is also a
question for philosophers. This is so for two
reasons. One, research
and development designed to validate an affirmative answer must
include philosophy –
for reasons rooted in earlier parts of the
present entry. (E.g., philosophy is the place to turn to for robust
formalisms to model human propositional attitudes in machine terms.)
Two, philosophers might well be able to
provide arguments that answer
the cornerstone question now, definitively. If a version of either of
the three
arguments against “Strong” AI alluded to above
(Searle’s CRA; the Gödelian attack; the Dreyfus argument)
are
sound, then of course AI will not manage to produce machines
having the mental powers of persons. No doubt
the future holds not
only ever-smarter machines, but new arguments pro and con on the
question of whether this
progress can reach the human level that
Descartes declared to be unreachable.
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