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during MR spectroscopy (Fig. 5C). The mul-
tiple peaks (amplitudes) in the MR spectros-
copy spectrum represent the relative contri-
butions of particular biologic metabolites in 
a given region of interest (ROI), each differ-
ing slightly in resonance frequency as a re-
sult of its unique chemical structure [2].

MR Image Encoding and Filling 
k-Space

With regard to MRI, the complicated sig-
nal we wish to decompose is the MR echo 
containing the frequency- and phase-encod-
ed spatial information necessary to construct 
an image. Following the slice selection gra-
dient for a typical spin-echo sequence, which 
isolates a particular imaging plane, all spin 
systems precess at the same frequency and 
phase as dictated by the main magnetic field 
(Bo). At this point, all protons in the desired 
imaging plane look the same to the Fourier 
transform. The application of superimposed, 
dynamically changing gradient fields intro-
duces spatially dependent variations in fre-
quency and phase across the ROI, effectively 
interrogating the anatomy for all different 
spatial frequencies. The steeper the applied 
gradient, the greater degree of achievable 
separation of spin systems is possible. Strong 
gradients are necessary to seek out high spa-
tial frequencies (detail), whereas less steep 
gradients bring out lower spatial frequencies 
(contrast). In addition, these smaller gradi-
ents generate much more collective signal 
than steep gradients because precessional 
frequencies and phase are overall more similar 
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J
oseph Fourier (1768–1830) is 
credited with observing that a 
complex signal can be rewritten 
as the infinite sum of simple si-

nusoidal waves [1]. Fourier himself is most 
famous for applying this principle to solving 
an array of differential equations governing 
heat dissipation. However, applications of 
this concept are invaluable to anyone who 
wishes to study the composition of a complex 
signal, whether it is in the form of music, 
voices, images, or digital medical imaging, 
including MRI.

Any complicated signal or wave can be re-
written as the sum of a series of simple waves. 
An approximation of a complicated wave can 
be achieved by adding together very simple 
sine and cosine waves (Fig. 1) with varying 
combinations of frequencies and amplitudes 
(Fig. 2). The Fourier series (Fig. 3) provides a 
means to describe a complicated wave in 
terms of simple sines and cosines. The more 
of them we add together, each with succes-
sively higher frequency, the better the ap-
proximation (Fig. 4).

The Fourier transform decomposes a com-
plicated signal into the frequencies and rela-
tive amplitudes of its simple component 
waves.

The Fourier transform (Fig. 5A) allows us 
to study the frequency content of a variety of 
complicated signals [1]. We can view and 
even manipulate such information in a Fou-
rier or frequency space (Fig. 5B). A familiar 
clinical example of a Fourier space is the fre-
quency and amplitude spectrum obtained 
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OBJECTIVE. The Fourier transform, a fundamental mathematic tool widely used in sig-
nal analysis, is ubiquitous in radiology and integral to modern MR image formation. Under-
standing MRI techniques requires a basic understanding of what the Fourier transform ac-
complishes. MR image encoding, filling of k-space, and a wide spectrum of artifacts are all 
rooted in the Fourier transform.

CONCLUSION. This article illustrates these basic Fourier principles and their relation-
ship to MRI.
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across the ROI (this will be evident when we 
compare the central portions of k-space with 
the periphery, discussed later). The ampli-
tude of the returning echoes will vary with 
tissue composition, TR, and TE [3, 4].

This otherwise hopelessly complicated 
signal is digitized, dismantled by the Fourier 
transform, and entered into k-space, a 2D 
Fourier space that organizes spatial frequen-
cy and amplitude information (Fig. 6). One 
pixel in k-space, when inverse-transformed, 
contributes a single, specific spatial frequen-
cy (alternating light and dark lines) to the 
entire image. A 2D inverse Fourier transform 
of the entirety of k-space combines all spatial 
frequencies, and results in the image we see. 
Depending on where a pixel resides in k-
space, the lines will be of varying frequency 
and orientation. By convention, high spatial 
frequencies are mapped to the periphery of 
k-space and low spatial frequencies are 
mapped near the origin. The relative intensi-
ty of a pixel reflects its overall contribution 
to the image, with brighter pixels contribut-
ing more of a particular spatial frequency.

Radiofrequency spike is an artifact that 
exemplifies this concept quite nicely. A spark 
or other source of radiofrequency noise in 
the MR scanner room can contaminate the 
MR echo. When Fourier-transformed, the 
frequency of that spark may be erroneously 
incorporated into k-space as an abnormal, 
bright pixel. The rogue frequency is then in-
verse-Fourier-transformed into sinusoidal 
noise in the image space (Figs. 7A and 7B). 
Zipper artifact is another manifestation of ra-
diofrequency leak. It is caused by a constant, 
narrow range of radiofrequency emission that 
is occasionally emanating from patient moni-
toring devices. When this unwanted signal is 
inverse-Fourier-transformed into the image 
space, it manifests as persistent, thin, hyperin-
tense lines in the frequency-encoding direc-
tion that are thought to resemble a zipper [3] 
(Fig. 7C).

Depending on how and when we choose to 
activate a particular combination of phase- 
and frequency-encoding gradients, we have 
the option of filling k-space in several creative 
ways. If we inspect the Fourier space of a pho-
tograph of Lincoln (Fig. 8A), the most intense 
portions (brightest pixels) are located central-
ly where low frequencies reside (contrast). 
This is where the most essential components 
of the image are stored. By corollary, when 
filling k-space, we may choose to fill the cen-
tral, high-signal-to-noise portions and ignore 
the less important, low-signal-to-noise regions 

to reduce acquisition time. This can be ac-
complished by activating gradients corre-
sponding to the center of k-space, perhaps in a 
spiral fashion [3] (Fig. 8B). Furthermore, the 
symmetric organization of k-space, a direct 
consequence of complex conjugate symmetry 
properties inherent to the Fourier transform, 
has been used to decrease acquisition time by 
acquiring only half of k-space [3] (Fig. 8C). 
A mirror image of the remaining half can 
then be generated, saving time at the expense 
of the signal-to-noise ratio.

Phase-encoding involves quickly activat-
ing, then deactivating a gradient. While the 
gradient is transiently on, some spin systems 
will precess faster than others, depending on 
their location along the gradient. When turned 
off, the rate of precession across the ROI will 
equilibrate; however, a spatially dependent, 
gradual change in phase will have been “im-
printed” on the protons [3, 4]. Successively 
increasing the phase-encoding gradient am-
plitude will create a varying rate-of-change 
of phase across the ROI. This rate-of-change 
of phase translates into a kind of frequency 
that the Fourier transform resolves into dif-
ferent spatial frequencies [5] (Fig. 9A). The 
greater number of phase-encoding steps per-
formed, the greater the resulting spatial reso-
lution (Fig. 9B).

Artifacts
Gibbs artifact is an imperfect approxima-

tion of sharp edges by a Fourier series lack-
ing an adequate number of high-frequency 
terms. This effect is easily shown by remov-
ing high spatial frequencies from the Fourier 
space of an image of Lincoln and inverse-
transforming the result (Figs. 10A and 10B). 
In MRI, this is commonly referred to as trun-
cation or ringing artifact, and it becomes no-
ticeable when too few phase-encoding steps 
are performed. It is often seen near the inner 
table of the calvarium (Fig. 10C) or in the 
upper cervical spinal cord, where it can be 
mistaken for a syrinx. Increasing the number 
of phase-encoding steps (e.g., from 128 to 
256) will ameliorate this artifact.

Because it consumes the most time in sig-
nal acquisition, motion artifact or ghosting 
most noticeably occurs in the phase-encoding 
direction. In the time it takes to apply a new 
phase-encoding amplitude step (approxi-
mately seconds), a moving structure may 
have assumed a new position and thus a new 
resonance frequency. Phase-encoding an 
abrupt change in position is essentially ap-
proximating a sharp edge (frequency shift) 

with sinusoidal waves (phase-encoding), 
leading to ringing artifact in its Fourier series 
[6] (Fig. 11). When these phase-encoding  
errors are inverse-Fourier-transformed, the 
structure appears to be spread out over the 
image in the phase-encoding direction, re-
gardless of the original direction of motion.

Aliasing or wraparound artifact (Fig. 12) is 
also related to phase-encoding and Fourier 
misregistration. To understand this artifact, 
recall that a phase shift of exactly 2π radians 
or 360° will superimpose two waves exactly, 
and thus negate any benefit of imparting spa-
tial variation based on phase. This leaves –π 
to +π (−180° to + 180°) available to phase-
encode a given field of view. Aliasing artifact 
occurs when excited spin-systems from out-
side the field of view (less than –π or more 
than +π) overlap with those of identical phas-
es inside the field of view. Mathematically 
indistinguishable, these structures are as-
signed by the Fourier transform to the same 
spatial position in the image space, causing 
them to wrap around to the other side [3].

Chemical shift (india ink artifact) is a spa-
tial misregistration phenomenon occurring in 
the frequency-encoding direction. Protons in 
fat and water precess at slightly different res-
onance frequencies (the gap becoming more 
prominent with increasing main magnetic 
field strength), with fat precessing slower 
than water by about 3.5 ppm. During fre-
quency-encoding, signal from a single voxel 
containing fat and water is assigned two dis-
crete spatial positions based on these two 
resonance frequencies [3] (Fig. 13A). The re-
sult is an accentuated bright or dark margin 
corresponding to fat–water interfaces. If res-
onance frequencies from fat and water are not 
resolved as different, additive fat and water 
signals from a given voxel will result in oscil-
lating peaks and troughs depending on the 
TE, forming the basis for in-phase and out-of-
phase imaging (Fig. 13B).

Summary
The Fourier transform is a fundamental tool 

in the decomposition of a complicated signal, 
allowing us to see clearly the frequency and 
amplitude components hidden within. In the 
process of generating an MR image, the Fou-
rier transform resolves the frequency- and 
phase-encoded MR signals that compose k-
space. The 2D inverse Fourier transform of 
k-space is the MR image we see. A grasp of the 
Fourier transform is essential to understanding 
several MR artifacts and the myriad of meth-
ods of signal acquisition in practice today.
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0 0.5π π 1.5π 2π 2.5π

amplitude = 2

g(t)

t

g(t) = 1 + 2sin(2πft)

period (T) = 2π = 1
f

Fig. 1—Adding simple waves. Example sine wave shown here, 1 + 2sin(2πft), has 
frequency f = 1 / (2π), period T = 2π, amplitude = 2, and is centered at g(t) = 1.

cos(3t)

+

2cos(2t) 3cos(t)

+

cos(3t) + 2cos(2t) + 3cos(t) = = g(t)

=

Fig. 2—Complicated waves. A complicated wave g(t) can be obtained by adding 
together simpler waves.

The average value of g(t) over one period T
centers this wave vertically in space.

Multiplying g(t) by the simple cosine or
sine wave in question, integrating the result, 
and dividing by half the period leaves an 
expression for a specific amplitude (an or bn) 
while everything else cancels out.

A complicated signal g(t)  = The infinite sum of simple cosine and sine waves
of varying amplitudes (an and bn) and progressively
increasing frequency ƒ.

a0 = 

a0 
an cos (2πnft) + bn sin(2πnft)

g(t)dt

g(t) =
n = 1

∑
∞

+

2
T 

2 

T

0 an = g(t)cos(2πnft)dt2
T 

T

0

bn = g(t)sin(2πnft)dt2
T 

T

0

Fig. 3—Fourier series for g(t). A complicated wave g(t) can be rewritten as an infinite sum of simple cosine 
and sine waves by progressively increasing their fundamental frequency f by integers n, and by varying their 
amplitudes, an and bn. If we substitute g(t) = 1 (a square wave) into the equations shown here, we obtain 
expressions for a0, an, and bn that can be inserted into the Fourier series. After simplifying, we are left with a 
Fourier approximation for a square wave. 
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πx

y

0.5π0

y =

0 x < 0
0 x > π

1

A B

Fig. 4—Fourier series for a square wave.
A, A square wave, given by y (equal to 1 for 0 < x < π and equal to 0 everywhere 
else), can be approximated with increasing accuracy by addition of simple sine 
and cosine waves of progressively increasing frequency.
B and C, In waves shown in B, n = 1, 3, 9; in C, n = 51.
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C

G(ƒ) =

Fourier Transform:

g(t)e−i2πƒtdt
∞

−∞

g(t) =

Inverse Fourier Transform:

G(ƒ)ei2πƒtdƒ
∞

−∞

A

B

Fig. 5—Fourier transform (FT).
A, Fourier transform of a complicated signal g(t), which exists in time (t) or spatial 
domain, gives an expression for frequency domain G(f). When plotted, frequency 
domain displays individual frequencies and relative amplitudes of simpler waves 
constituting g(t). Inverse Fourier transform (iFT) of G(f) restores the time domain. 
No information is gained or lost in mathematic transforms; they merely change the 
way we see the same information.
B, Fourier transform (FT) extracts the frequencies and relative amplitudes of the 
simpler waves hidden in a complicated wave g(t). Inverse Fourier transform (iFT) 
restores the time domain. In this example, Fourier transform of three cosine waves 
of different frequencies results in three delta functions.
C, MR spectroscopy. In contrast to MRI, which uses resonance frequencies 
and phase to encode an image, MR spectroscopy addresses a smaller region 
of interest (ROI) with a specific radiofrequency pulse bandwidth. Multiple 
neuronal metabolites (mI, myoinositol; Cho, choline; Cr, creatine; Glx, glutamate 
and glutamine; NAA, N-acetyl aspartate; Lac, lactate; Lip, lipid) resonate at 
characteristic frequencies on the basis of their unique chemical structure. 
The returning MR spectroscopy echo is a composite signal of many different 
echoes from metabolites in the ROI, which is resolved into individual resonance 
frequencies and their relative amplitudes (abundance) by the Fourier transform. 
The term “relative” is an important qualifier because the Fourier transform cannot 
measure the absolute nature of any frequency. The height of a peak in the MR 
spectroscopy Fourier spectrum makes sense only relative to another peak.
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A B

C D

Fig. 6—Fourier spaces and k-space [7, 8].
A, Fourier transform of a blank canvas (left) is one bright dot at the origin in the 
Fourier space (right).
B, Fourier transform of a single spatial frequency in the image domain is simple. 
Three bright dots are seen in the Fourier space as a consequence of symmetry 
properties inherent to the Fourier transform.
C, Fourier transform (FT) of an image is represented by a 2D gray-scale 
magnitude image in which each pixel represents a particular spatial frequency. 
By convention, high frequencies are mapped to the periphery and low 
frequencies to the origin. Pixel intensity corresponds to the relative contribution 
of that frequency to the entire image. Any image (which can be thought of 
as a complicated wave of varying pixel intensity) can be constructed by the 
combination of different spatial frequencies (simple waves). Fourier transform 
of a simple white square on a black background, for instance, shows a cruciate 
pattern of increased intensity along the traditional x- and y-axes. This reflects the 
contribution of spatial frequencies (given by the inverse FT = iFT) most necessary 
to recreate the image, which happen to be orthogonal to the edges of the square. 
Because essentially no diagonals or curves are present in the image, these spatial 
frequencies are not as highly represented in the Fourier space. (Fourier transform 
and inverse Fourier transform images (iFT) generated with ImageJ, National 
Institutes of Health, Bethesda, MD)
D, Fourier transform (FT) of photograph of Lincoln. All spatial frequency 
information necessary to create this image of Lincoln is stored in his Fourier space 
(right). As discussed previously, a single pixel in the image does not have a single 
pixel correlate in the Fourier space. Rather, each pixel in Fourier space contributes 
a spatial frequency to the overall image of Lincoln.
E, MRI. This coronal slice of a brain is interrogated for all its different spatial 
frequencies by successively altering magnetic field gradients (open arrows in 
top three images) during frequency- and phase-encoding. Although only three 
examples are shown here, many different gradient combinations are necessary to 
fill k-space. Inverse Fourier transform (iFT) of k-space essentially adds the relative 
contributions of all spatial frequencies to give the final image.
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A B

Fig. 7—Radiofrequency spike artifact [7, 8].
A, One abnormal, bright pixel in a Fourier space is transformed into sinusoidal noise in the image space. If moved slightly farther away from the origin, spatial frequency is 
higher. A spark in the MR scanner room, erroneously integrated into k-space, may result in radiofrequency spike artifact. FT = Fourier transform.
B, Door to MR scanner was left open just a crack during this acquisition. Notice regular pattern of striations (arrows) present in image, a result of radiofrequency leak.
C, “Zipper” artifact from radiofrequency leak. During this sagittal FLAIR acquisition, radiofrequency noise from a patient monitor is transformed into intense thin bright 
lines through the image. Artifact reflects a narrow range of contaminant frequencies manifest in frequency-encoding direction. Every image during this acquisition was 
degraded by the same intense lines in the same location.
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A

B

Fig. 8—Differential filling of k-space.
A, When low frequencies are removed from Fourier space of Lincoln (upper left), sharp edges are preserved in image at the expense of contrast resolution. When high 
frequencies are removed, image contrast is preserved; however, it is blurry and demonstrates Gibbs artifacts (see Fig. 10). Observe how few spatial frequencies are 
actually necessary to recreate a recognizable image of Lincoln. FT = Fourier transform, iFT = inverse Fourier transform.
B, By steering frequency- and phase-encoding gradients appropriately during MR image acquisition, k-space can be filled not only sequentially line by line, but also in a 
spiral fashion about the origin. Filling the essential, high-signal-to-noise, central portions of k-space can save considerable time and result in a recognizable image. This 
comes at the expense of fine detail, which is stored in the periphery of k-space (as depicted in A).
C, Fourier transform formula makes use of exponentials of imaginary numbers (ei) to represent simple waves, and as a result the Fourier transform yields both real and 
imaginary information displaying complex conjugate symmetry. Half-Fourier techniques exploit this symmetry by acquiring only half of k-space and generating a mirror 
image of the remaining half. Such a time-saving mechanism comes at the expense of signal-to-noise, however, because only half of the potential signal is actually 
acquired.
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A B
Fig. 9—Phase-encoding.
A, Spin systems are purposely dephased across a region of interest to create spatial variation in phase-encoding direction. The four cosine waves in this figure are 
shifted slightly out of phase. If a line intersects the middle of the waves, and the changing amplitude along this line is plotted, it corresponds to its own wave. This rate-
of-change of phase corresponds to a frequency that Fourier transform can resolve. Each phase-encoding step is performed at different gradient amplitudes, resulting in 
differing degrees of phase change.
B, Columns in 4 × 4 matrix image each correspond to a specific frequency, depending on location (frequency-encoded). Without phase-encoding (left), Fourier transform 
(FT) cannot resolve any differences in brightness in vertical direction because all frequencies are identical and all amplitudes (brightness) are blurred together. The 
addition of a phase shift (middle, implied by a shift in the boxes to the right) imparts uniqueness to the boxes in the vertical (phase-encoding) direction so brightness is 
partially resolved. The greater the number of phase-encoding steps, the better the resolution (right) [8].

A

B

Fig. 10—Gibbs artifact (also called truncation or ringing artifact).
A, High spatial frequencies were removed from this image of Lincoln. When 
inverse-transformed, not enough frequencies are available to approximate sharp 
edges, resulting in Gibbs artifact and blurring.
B, Gibbs phenomenon is evident mathematically and in manipulated image of 
Lincoln (arrows).
C, Axial gradient-echo image of brain obtained at 256 × 160 matrix. Gibbs artifact 
near inner table of calvarium manifests as subtle hypointense lines overlying 
cortex (arrows).
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Anatomic Position

Time

Frequency

Aortic
Pulsation

Frequency
Encoding

Phase
Encoding

Image
Space

Abrupt change in
position results in
a frequency shift

Imperfect phase
encoding of this 
abrupt shift in position

A B
Fig. 11—Motion.
A, Ghosting (motion). An abrupt change in the position of a structure results in a shift along the frequency-encoding gradient and a change in precessional frequency. 
Phase-encoding an abrupt shift in position is similar to approximating a sharp edge with a Fourier series. Ripples in its Fourier series propagate in the phase-encoding 
direction. For a structure with periodic motion such as aortic pulsation, these errors are incorporated into k-space in a periodic fashion, resulting in duplicates of the 
moving structure propagating in the phase-encoding direction, regardless of the direction of the original motion.
B, In this axial T1-weighted MR image, pulsation artifact from aorta simulates a hypointense epidural lesion (arrow). Swapping frequency- and phase-encoding directions 
can often redirect this artifact away from target anatomy.
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Wave “I” is 2π radians (or 360˚) out of phase 
with wave “A,” and thus mathematically
indistinguishable to the Fourier transform

Fourier assigns waves “I” and “A” to the
same position

H

I

A B
Fig. 12—Wraparound.
A, Wraparound (aliasing). Only phase shifts between 2π radians or 360° are available to encode an image. The phase shift in this image (depicted by waves A–H) covers 
the field of view (black rectangular outline). Just outside the field of view, wave “I” has assumed a phase shift of 2π radians (360°) and is mathematically identical to wave 
“A” on the opposite side of the field of view. Fourier transform assigns structures encoded by “I” to positions encoded by “A,” giving the wraparound phenomenon.
B, Axial T2-weighted image shows back of head (excluded from field of view) wrapping around to the front.
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Fourier Transform and MRI
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Fig. 13—Chemical shift.
A, Chemical shift artifact occurs when a voxel in the body contains both fat 
and water. When signal from such a voxel is Fourier-transformed, peaks 
corresponding to both fat and water (each differing in amplitude, depending on 
TR and TE) resonate at slightly different frequencies, separated by 3.5 ppm at 1.5 
T). Fourier transform (FT) assigns two separate spatial locations to a single voxel 
on the basis of these different frequencies (chemical shift), despite their common 
origin. iFT = inverse Fourier transform.
B, Axial gradient-echo out-of-phase (left, TR/TE, 150/2.236) and in-phase (right, 
150/5.516) images through abdomen. When fat (lower frequency) and water 
(higher frequency) signals from a single voxel are added, alternating peaks and 
troughs occur at regular time intervals. At TE of 2.236 (left image), a sharp, dark 
margin delineating fat–water interfaces (around liver, kidneys, muscles, and so 
forth) represents signal trough from voxels sharing water and fat. At TE of 5.516 
(right image), the restored signal replaces the sharp interface.

Out of Phase

2.2

Signal
Addition

Overlap

Fat

Water

In Phase TE (msec)

5.5
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This article is available for CME credit. See www.arrs.org for more information.
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