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By producing a train of absorption or dispersion signals (continuous-wave magnetic resonance) or free induction 
decays (pulsed magnetic resonance) it is possible to save time in spin-lattice relaxation measurements due to the 
fact that it is not necessary to wait fer equilibrium magnetization before initiating the train. The relaxation time 
may be calculated from the train according to a simple rapidly converging iteration. 

INTRODUCTION 

A PERIODIC train of magnetic field passages through 
resonance, or a periodic train of rf pulses at resonance 

produce, respectively, a corresponding train of absorption 
(or dispersion) signals or free induction decays, illustrated 
in Fig. 1; these may be analyzed to yield the spin-lattice 
relaxation time Tl.l Methods and apparatus for ac­
complishing such experiments have been discussed for 
cw NMR,!·2 cw EPR,3 and pulsed NMR.4 It is the purpose 
of this paper to show that it is not necessary to wait for 
equilibrium of the spin system before initiating such a 
train of signals, and the resulting time saving may be 
considerable if Tl is large. 

I. THEORY 

Following Look and Locker,! let T be the time between 
successive signals in the train and let M" + and M n - be, 
respectively, the magnetization along the magnetic field 
before and after the nth passage (or pulse). Furthermore, 
define the fraction of saturation, X, due to a passage 
(or pulse) by 

M,,+=Mn-(1-X), 0~X~2, (1) 

where X = 2 would correspond to an adiabatic reversal 
or 1800 pulse. Assuming that between successive passages 
M relaxes exponentially we have 

M "+I-=Meq-(1-e-T/Tl)+M ,,+e-T/T1 

=M eq-(1-e-T/T1 )+ M ,,-(1-X)e-T/T1 , (2) 

where M eq- is the equilibrium magnetization. Designating 
the first signal in the train as Mo and letting u=e-T/T1 

and y=(l-X), we can relate Mn to Mo by induction, 
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according to Eq. (2), 

M 1-=Meq-(1-u)+Mo-Yu 
M2-=Meq-(1-u)[1+yu]+Mo-yu2 

M ,,-=Meq-(1-u)[1 +YU+y2U2 . . . y,,-lun-l] 

+Mo-Y"u". (3) 

The observed signal M" will be proportional to M" - so 
we can drop the superscripts and rewrite Eq. (3) as 

,,-1 

M,,=M eq (1-u)L: yquq+Moynun 
q=-O 

1-y"un 
=Meq(1-u) +Moy"un. (4) 

1-yu 

Mter many passages, the magnetization reaches a constant 
value Moo given by Eq. (4) as 

Moo =Meq(l-u)/ (l-yu) (5) 

and, thus, 

in 

:1 l' ~ 
:::> 

\ ' Iri 
It: 

IU 
~ 
w c 
:::> 
f-
:::; 

~ 
...J « z 
C> 
iii 

TIME (ARB. UNITS) -

FIG. 1. A recorder tracing of a train of free induction decays in 
~n2+-doped H 20, each decay following a pulse of about 48°. The 
hme between pulses is T. For details of the calculation of Tl see the 
text and Ref. 4. 
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or, using Eq. (5) to solve for X=l-y, 

Taking logarithms of both sides gives an equation of the 
form Y=I+nS where I and S are, respectively, the 
intercept and slope of a Y vs n plot. Here 

Y=ln(Mn-Moo) (8a) 

el = (Mo-Moo) (8b) 

eS =e-T/Tt[l + (M eq-Moo)/Moo]-[(Meq-Moo)/Mco]. (8c) 

It should be remarked here that Eqs. (8) hold only for 
the case 0:::; X:::; 1 since otherwise the expression in square 
brackets in Eq. (6) would be negative and logarithms 
would not be permissible. For 1:::;XS2, i.e., the case for 
which the magnetization is partially or fully reversed by 
a passage (or pulse), it may be easily shown that a plot of 
lnl Mn-Mool vsnhasaninterceptgivenbyel = I Mo-M", I , 
and a slope S' given byeS' = -[right hand side of Eq. 
(8c)]. 

If Mo=Meq, then Eqs. (8b) and (8c) may be quickly 
solved for T 1 ; this was the case assumed in Ref. 1. How­
ever, if Mo<Meq, due to initiation of the train of pas­
sages before equilibrium is reached, still the slope of the 
In(Mn-Moo) vs n plot is the same since it does not depend 
upon Mo. Unfortunately, there are now two unknowns, 
Meq and T 1, but we can easily relate Meq to Mo. Before 
doing this we note a special case, X = 2 (adiabatic reversal) 
and T/T1«1. Then by Eq. (5), Moo~O, and therefore by 
Eq. (6), IMnl~Moe-nT/TI. This result was derived by 
Santini5 and applied in the study of TI in liquid 3He. 

For the general case we define T as the off-resonance 
"waiting" time and M as the magnetization at the be­
ginning of the waiting time. Then 

(9) 

This relates Mo to Meq and Eq. (8c) can then be solved 
for T 1• However, in the usual experimental situation M 
will be the last signal in the preceding train. If the train 
is long enough, then M=Moo+=Moo-(1-X). Since, 
according to Eq. (6), eS = (1-X)C T

/
T \ we use Eq. (5) 

to get 

Moo(1-X) =Meq[(1-e-T/T1)/ (l-eS)]eSeT/TJ, (10) 

and thus, by Eq. (9), 

Meq=Mo{1-[(1-eseT/Tl)e-TITI/ (l-eS)]}-I. (11) 
----

• M. Santini, Nuovo Cimento 16, 232 (1960). 

Then, from Eqs. (8c) and (11), 

(12) 

which can be solved for Tl using the experimental param­
eters, T and T, those given by the data, Moo and Mo, and 
the calculated slope S of an In(M n-Mco) vs n plot. 

II. ITERATION 

It is generally more convenient to solve Eq. (12) 
iteratively if T'i2:, T 1 since the second term in square 
brackets is clearly a corrective term which is small when 
T is large, making M 0 close to M eq. Thus, defining the 
successive approximations to T 1 as T 1 (1), T 1 (2), T 1 (3) ... , 
we cyclically solve 

e-T/T1 (n+1l = 1- (l-eS) (M",/Mo)[l-C(n)], n2: 0 (13a) 

C(n) = (l_eSeT/Tl(n»e-T/Tl(n)/(l_eS), n2: 1 (13b) 

letting C(O)=O. The first few terms are 

e-T/Tl(l)=l-(l-eS)M",/Mo (14a) 

C(1) = (l_eSeT/Tl(l)e-T/Tl(l) / (l-eS) (14b) 

e-T/T1 (2) = 1- (l-eS)(M",/Mo) (l-C(I». (14c) 

The convergence is generally quite rapid. In one example 
(19F in CaF2), which the authors chose at random, the 
parameters were Tl =0.125 sec (true T 1), eS =0.688, 
T=0.025 sec, Moo/Mo=0.675, and T=0.164~1.35TI. 
Then, using Eqs. (13a) and (13b), we got T1(1)=0.106 
sec, T1(1)=0.122 sec, T 1(3)=0.124 sec, and T 1(4)=0.125 
sec. Thus, with only three iterations the T 1 value was 
within 1% of the correct value and the data accumulation 
time was only about one half of that required to insure 
Mo=Meq. In another example (IH in H 20) the parameters 
were TI=2.50 sec, eS =0.580, T=0.0625 sec, M.,jMo 
=0.0974, and T=2.23 sec~0.89TI. The iterations gave 
T1(1)=1.49 sec····, T I(7)""2.48 sec; thus, after seven 
iterations the T I value was less than 1% low and the data 
accumulation time was only about one fourth that norm­
ally required. 

Although in the above examples the Tl measurement 
time would not be long by any method, it is apparent that 
if it is expected to be long, due to a large T 1, the method 
described in this paper has significant advantages since it 
is not necessary to wait for spin system equilibrium before 
taking data. The iterations are easily programmed on a 
computer.6 

6 Interested persons may obtain the computer program (FORTRAN 
IV, XTRAN, or CAL) from the authors. 
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