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ABSTRACT

SUMMARY: Resting-state fMRI measures spontaneous low-frequency fluctuations in the BOLD signal to investigate the functional
architecture of the brain. Application of this technique has allowed the identification of various RSNs, or spatially distinct areas of the brain
that demonstrate synchronous BOLD fluctuations at rest. Various methods exist for analyzing resting-state data, including seed-based
approaches, independent component analysis, graph methods, clustering algorithms, neural networks, and pattern classifiers. Clinical
applications of resting-state fMRI are at an early stage of development. However, its use in presurgical planning for patients with brain
tumor and epilepsy demonstrates early promise, and the technique may have a future role in providing diagnostic and prognostic
information for neurologic and psychiatric diseases.

ABBREVIATIONS: BOLD� blood oxygen level–dependent; DMN� defaultmode network; ICA� independent component analysis; RS-fMRI� resting-state fMRI;
RSN� resting-state network

fMRI using task-based or stimulus-driven paradigms has been

critical to our current understanding of brain function. Using

the relative changes from baseline in the BOLD signal during the

performance of a task or in response to a stimulus, one infers that

certain areas of the brain are activated. In recent years, there has

been an increase in interest in the application of the technique at

rest, termed resting-state fMRI or functional connectivity MR

imaging. RS-fMRI investigates synchronous activations between

regions that are spatially distinct, occurring in the absence of a

task or stimulus, to identify RSNs. In this review, we provide a

discussion of RS-fMRI studies and analysis techniques and pres-

ent potential clinical applications from the literature.

Background on RS-fMRI
RS-fMRI focuses on spontaneous low frequency fluctuations

(�0.1 Hz) in the BOLD signal. The functional significance of

these fluctuations was first presented by Biswal et al in 1995.1 In

this study, subjects were told not to perform any cognitive, lan-

guage, or motor tasks. The authors identified a seed region in the

left somatosensory cortex on the basis of traditional block design

fMRI, during which the same subjects performed bilateral finger

tapping. After determining the correlation between the BOLD

time course of the seed region and that of all other areas in the

brain, the authors found that the left somatosensory cortex was

highly correlated with homologous areas in the contralateral

hemisphere. The existence of synchronous spontaneous fluctua-

tions between primary and higher order somatosensory areas was

further confirmed by later studies.2-6

Perhaps the most fundamental RSN is the DMN (Fig 1A), first

identified from PET data by Raichle et al7 (for further discussion,

see Gusnard et al8). In this study, the authors analyzed data from

healthy volunteers resting quietly with their eyes closed. They

found that consistent regions of the brain were active at rest but

decreased their activity when cognitive tasks were performed. The

default mode network was identified by Greicius et al9 by using

fMRI and was confirmed in many studies by using a variety of

analysis methods.2-6,10,11 Studies have hypothesized that there are

2 large opposing systems in the brain, one including the DMN and

the other composed of attentional or task-based systems, such as

somatosensory, visual, or attention RSNs. Terms used to refer to

these systems include “task-positive” and “task-negative”4,12,13

and “intrinsic” and “extrinsic.”14,15

Several other RSNs have been identified. The somatosensory

network, studied first by Biswal et al,1 includes primary and

higher order motor and sensory areas (Fig 1B). The visual net-

work is highly consistent across various studies and spans much of

the occipital cortex (Fig 1C).2-6 An auditory network consisting of
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the Heschl gyrus, the superior temporal gyrus, and the posterior

insula has been identified.5 A language network that includes

Broca and Wernicke areas but also extends to prefrontal, tempo-

ral, parietal, and subcortical regions has been described by using

RS-fMRI (Fig 1D).16

RSNs involved in attentional modulation and cognitive con-

trol have also been identified. Two networks identified by using

both RS-fMRI and task-based fMRI include the dorsal and ventral

attention networks.4,6,17,18 The dorsal attention network (Fig 1E)

includes the intraparietal sulcus and the frontal eye field and is

involved in the executive control of attention. The ventral atten-

tion network (Fig 1F), which includes the temporoparietal junc-

tion and ventral frontal cortex, is involved in the detection of

salient cues (those that stand out from their environment).17 The

frontoparietal control network (Fig 1G), which includes the lat-

eral prefrontal cortex and the inferior parietal lobule, is thought to

be involved in decision-making processes.19 Finally, the cingulo-

opercular network, which includes the medial superior frontal

cortex, anterior insula, and anterior prefrontal cortex, is thought

to play a role in performing goal-directed task sets.4,20

Analysis Methods
BOLD signal preprocessing generally includes correction for sec-

tion-dependent time shifts and intensity differences. This is fol-

lowed by regression of head motion and other nuisance regressors.

Nuisance regressors include the signal time courses for regions of

interest located in the ventricles and white matter, which are

thought to include high proportions of noise related to cardiac

and respiratory signals.21-24 Spatial smoothing and low-pass fil-

tering to retain frequencies �0.1 Hz help to remove signal from

non-neuronal causes and improve the signal-to-noise ratio.24,25

Images are then registered to atlas space to achieve spatial concor-

dance with coordinate systems and between subjects.

Controversial topics in data preprocessing include whole-

brain regression and head-motion correction. Whole-brain re-

gression, which regresses out the average time course of the entire

brain, has been proposed as a method of improving the specificity

of correlations and reducing noise.26 The whole-brain signal has

also been found to correlate with the effects of carbon dioxide

partial pressure variation.27 However, some believe that by shift-

ing the distribution of correlations, whole-brain regression pro-

duces spurious negative correlations that have no physiologic sig-

nificance.28,29 Head-motion correction has also recently become

a matter of debate because it has been shown that inadequate

correction for head motion can result in spurious correlations in

RS-fMRI analysis.30-32 Although head motion is less concerning

in healthy young adults, it poses significant challenges for the

analysis of data acquired from children, older adults, and patients.

After these preprocessing steps, a number of methods can be

FIG 1. Surface plots of RSNs. A, Default mode network. B, Somatomotor network. C, Visual network. D, Language network. E, Dorsal attention
network. F, ventral attention network. G, Frontoparietal control network.
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used to analyze the data, each with its own inherent advantages

and disadvantages. In this section, we provide a brief overview of

some of the statistical and mathematic approaches previously ap-

plied to RS-fMRI data.

The first1 method used was seed-based analysis, which has

been applied in numerous studies.1,7,17,19 This method entails

selecting ROIs and correlating the average BOLD time course of

voxels within these ROIs with each other and with the time

courses of all other voxels in the brain. Typically, a threshold is

determined to identify voxels significantly correlated with the re-

gion of interest. However, this approach requires a priori selection

of ROIs.

Another popular approach is ICA,2,10 a mathematic technique

that maximizes statistical independence among its components.

For RS-fMRI data, ICA can be used to spatially identify distinct

RSNs. Compared with seed-based methods, ICA has the advan-

tage of requiring few a priori assumptions but does compel the

user to manually select the important components and distin-

guish noise from physiologic signals. Some studies have aimed to

automate this process and use ICA as a method for identifying

noise within the BOLD signal.33-36 Despite the differences in the 2

approaches, Rosazza et al37 showed that the results of seed-based

analysis and ICA are significantly similar in a group of healthy

subjects.

Graph methods provide a distinct alternative to seed-based

analyses and ICA.4,38-44 This approach views RSNs as a collection

of nodes connected by edges. With RS-fMRI data, ROIs can be

represented as nodes, and correlation between the ROIs, as the

connectivity of the edges. Connectional characteristics of the

graph can then be computed.44 Examples of measures of interest

include the average path length, a measure of global connected-

ness, which is the average length of the shortest connection be-

tween all pairs of nodes.44 Another measure of interest is the clus-

tering coefficient, which is related to the connectedness of

neighboring nodes and reflects the presence of smaller sub-

graphs.44 Using these techniques, several studies have demon-

strated that the brain exhibits a small world topology. Small world

topology, which was first described in social networks, allows each

node to have a relatively low number of connections while still

being connected to all other nodes with a short distance. This is

achieved through the existence of hubs, which are critical nodes

with large numbers of connections, that allow high levels of local

connectivity.39,45 Small world networks have high clustering co-

efficients implying high levels of local connections (ie, cliques or

groups) and an overall short distance between any 2 nodes, or a

small average path length.40-42

Another method used to analyze RS-fMRI data is clustering

algorithms. Clustering algorithms attempt to group items that are

alike on the basis of a set of relevant characteristics to the problem

of interest. When analyzing RS-fMRI data, one may want to group

a collection of voxels or ROIs on the basis of similarities in their

BOLD time courses by using some distance metric, such as a Pear-

son correlation. One example of a clustering algorithm is hierar-

chical clustering,42,46 which builds a dendrogram (a treelike

structure) of all members. Other examples of clustering algo-

rithms are the K-means15 and c-means47 clustering algorithms. In

these algorithms, all voxels are assigned membership to 1 of sev-

eral clusters on the basis of their distances from the cluster centers,

which, in turn, are calculated from an average of their members.

The algorithm iterates to update memberships and cluster centers

until convergence is achieved.47 Other variations on clustering

include spectral-based clustering48 and graph-based clustering.11

Multivariate pattern classification is another method that can

be used for analysis of RS-fMRI data.49 This approach uses pat-

terns in the data that were previously deemed important in a

training dataset to classify a new dataset. As an example, one

might identify specific sets of patterns or features for each RSN

and use them to identify the networks in a new dataset.50 In an-

other example, Dosenbach et al51 used RS-fMRI to predict indi-

vidual brain maturity. Temporal correlations were computed be-

tween the BOLD time courses of various regions throughout the

brain. Some of these functional connections were more informa-

tive than others in predicting brain maturity and could be used in

a classifier to predict the brain maturity of an individual.

Reliability of RS-fMRI
Important issues to consider in regard to RS-fMRI are the test-

retest reproducibility and intersubject variability. Studies suggest

that RSNs can be detected reliably across imaging sessions52,53

and across different subjects,10,53 though there may be some loci

of variability between subjects.52 In particular, Chou et al54 exam-

ined the reproducibility of RS-fMRI during 1 year and found an

intraclass correlation of �0.60 for �70% of the functional net-

works examined.

Clinical Applications
RS-fMRI has provided many interesting insights on RSNs in the

healthy brain and in multiple disease states.55 However, practical

application of RS-fMRI in the clinical setting requires the ability

to establish conclusions on the basis of analysis of data from in-

dividual patients. In this section, we focus on studies that have

demonstrated potential clinical applications at the single subject

level. Group-level studies were included in the pediatric applica-

tions section due to the more limited literature in this cohort.

Presurgical Localization of Eloquent Cortex
RS-fMRI has been applied to identify specific brain RSNs for pre-

surgical planning in patients with brain tumor (Fig 2). Compared

with existing task-based methods, RS-fMRI is less demanding and

can be performed on patients who may not otherwise be able to

cooperate with task-based paradigms, such as young children,

patients with altered mental status, sedated patients, and those

who are paretic or aphasic,56-58 especially because BOLD activity

seen in RS-fMRI has also been seen during sleep59 and anesthe-

sia.60,61 Another advantage of RS-fMRI over task-based fMRI is

the ability to identify many networks simultaneously, thus saving

scanning time if information from multiple networks is required.

Several studies have reported the application of RS-fMRI for

preoperative planning. Zhang et al62 reported the successful lo-

calization of motor areas in 4 patients with tumors distorting

sensorimotor regions. Using a seed-based approach, they used an

ROI placed in the contralateral undistorted sensorimotor cortex

to identify the sensorimotor area in the distorted ipsilateral hemi-

sphere. A study by Kokkonen et al57 illustrated the convergence
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between ICA analysis of RS-fMRI and task-based fMRI in identi-

fying sensorimotor areas in 8 patients with tumor and 10 controls.

An additional study by Kokkonen et al,63 comparing RS-fMRI

pre- and postresection in patients with glioma, suggested that

edema affects the BOLD response on the side ipsilateral to the

tumor and that auditory and motor cortices are easier to detect

postoperatively by using the BOLD signal.

A more challenging problem is the identification of language

areas, which are known to be more variable in location64 and

which can also be distorted by tumor. In particular, this presents a

challenge to the seed-based approach but may be more tractable

with other analysis methods.

Surgical Planning in Patients with Epilepsy
RS-fMRI may also be used for presurgical planning in patients

with epilepsy. The higher spatial resolution afforded by RS-fMRI

over electroencephalography could provide a distinct advantage

in mapping epileptic foci or networks. Seed-based methods were

used by Liu et al56 to successfully locate sensorimotor areas by

using RS-fMRI in patients with tumors or epileptic foci close to

sensorimotor areas. They found agreement between RS-fMRI,

task-based fMRI, and intraoperative cortical stimulation data. In

another study from the same laboratory, Stufflebeam et al65 were

able to localize areas of increased connectivity in 5 of 6 patients

that overlapped with epileptogenic areas identified by invasive

encephalography. Zhang et al66 used graph methods and a pattern

classifier to identify regions involved in the epileptogenic net-

work. Using RS-fMRI data from 16 patients with intractable me-

dial temporal lobe epilepsy, they achieved an average sensitivity of

77.2% and a specificity of 83.86%. Bettus et al67 reported that

increases in basal functional connectivity were a specific marker

of the location of the epileptogenic zone in 22 patients with mesial

temporal lobe epilepsy.

In the future, RS-fMRI may also be of benefit in selecting pa-

tients for epilepsy surgery and in evaluating their outcomes. In a

study of a 5-year-old patient with severe epileptic encephalopa-

thy, a normal pattern of RSNs returned following corpus calloso-

tomy (Fig 3).68 The change from abnormal to normal RSNs was

accompanied by the resolution of behavioral regression that had

preceded the surgery and the resumption of new skill develop-

ment. The implications of this study extend beyond the benefit to

the practice of epilepsy surgery by providing evidence that RSNs

may be essential to the development and maintenance of the func-

tional organization of the brain.

Identification of Patients with Alzheimer Disease
Several studies have demonstrated the potential utility of RS-

fMRI in identifying patients with Alzheimer disease. A graph anal-

ysis of fMRI data from patients with Alzheimer disease and con-

trols showed that clustering coefficients for the hippocampus

were significantly lower in patients compared with controls, and

that this measure could separate patients from controls with a

sensitivity of 72% and a specificity of 78%.69 Koch et al70 studied

15 patients with Alzheimer disease and investigated differences in

the default mode network as a marker for Alzheimer disease. They

used both ICA and the correlations between 2 ROIs within the

DMN. With a multivariate model including both methods, they

FIG 2. Identification of motor and language areas by using RS-fMRI in
2 patients with glioblastoma multiforme. A, The somatosensory area
is displaced anterior to the tumor. B, Broca area is displaced anterior
to the tumor.

FIG 3. Selected seed-based correlation maps. Columns show the
seeds (left), preoperative maps (middle), and postoperative maps
(right). The map quantity illustrated is the Fisher z-transformed cor-
relation coefficient thresholded at� 0.2.A, Left somatomotor cortex
seed (�39 �26 51). Postoperatively, the somatomotor RSN is im-
proved and involves primary somatosensory areas (arrows ). B, Visual
cortex seed (�20�75 12). Postoperatively, the visual RSN is improved
and involves the occipital lobe (arrow ).
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achieved an accuracy of 97%. The authors of another study used

parameters from both structural MR imaging and RS-fMRI and

were also able to distinguish patients with Alzheimer disease from

healthy controls with an accuracy of 89%.71 Interestingly, this

study also found that several default mode regions were most

important in the classification.

Chen et al72 studied patients with Alzheimer disease, patients

with amnestic mild cognitive impairment, and controls and used

seed-based methods to determine correlations between pairs of

116 regions. Using linear regression analysis and a leave-one-out

cross-validation, the authors showed that RSN characteristics

could identify patients with Alzheimer disease and distinguish

patients with mild cognitive impairment from controls.

RS-fMRI may also be able to distinguish different types of de-

mentia. In a study of behavioral-variant frontotemporal demen-

tia, Alzheimer disease, and controls, reciprocal changes were seen

between the frontotemporal and Alzheimer dementia groups.73

The frontotemporal dementia group demonstrated decreased

connectivity in the salience network but increased connectivity in

the default mode network. Conversely, patients with Alzheimer

disease demonstrated decreased connectivity in the default mode

network but increased connectivity in the salience network. A

linear discriminant analysis by using these divergent characteris-

tics was able to distinguish frontotemporal dementia from Alzhei-

mer disease in all cases and achieved an overall 92% accuracy.

Other Applications
Recent work has demonstrated the ability of RS-fMRI to assist in

the diagnosis of disorders of consciousness, demonstrating a neg-

ative correlation between the connectivity of the DMN and the

level of consciousness impairment.74 Pattern classification of RS-

fMRI has been applied to distinguish patients with psychiatric

diseases from controls, including major depressive disorder75

and schizophrenia.76,77 RS-fMRI has also been used to identify

patients with autism78 and attention deficit/hyperactivity

disorder.79

Pediatric Applications
RS-fMRI can also be applied to study pediatric populations. Re-

cent work has used RS-fMRI in infants to demonstrate immature

forms of RSNs incorporating regions similar to those identified in

older children and adults. Smyser et al80 performed longitudinal

analysis of network development in a cohort of very preterm in-

fants during the neonatal period. Multiple RSNs were identified as

early as 26 weeks’ gestation, with characteristic patterns of neural

network development reported. Interestingly, differences in RSNs

were identified between term infants and those born prematurely,

a finding also reported by using other neuroimaging modalities.

Doria et al81 reported a similar collection of RSNs during the

neonatal period in a cohort of preterm infants. Other investiga-

tors have applied RS-fMRI to define early forms of RSNs during

infancy in former preterm and healthy term-born subjects.82-85

RS-fMRI of healthy subjects during early and middle

childhood has established the patterns of normative functional

cerebral development during this period.86-89 Although many

RSNs are similar to those recognized in adults, consistent differ-

ences reported in pediatric subjects include decreased long-range

and increased short-range correlations. The clinical significance

of these differences remains undetermined. Most recently, RS-

fMRI has been applied to investigate differences in RSN develop-

ment across pediatric disease states. Investigations in older pop-

ulations have demonstrated disparities in neural networks for

many disease states, including Tourette syndrome, attention def-

icit/hyperactivity disorder, and autism spectrum disorder.90-92

Future Directions
Although studies to date are promising, much work is needed

before RS-fMRI can be used routinely in the clinical setting. Fur-

ther work is needed to compare the various analysis methods and

their efficacy in detecting different disease states both in groups

and especially in individual subjects. The Human Connectome

Project,93 which is currently in progress, will aid in furthering our

understanding of the relationships between functional connectiv-

ity and structural connectivity by using advanced MR imaging

methods with behavioral and genetic factors.

CONCLUSIONS
RS-fMRI has provided new insights on the functional architecture

of the healthy brain. Various RSNs, or collections of regions that

have synchronous spontaneous BOLD fluctuations, have been

identified, including the DMN and sensorimotor, visual, and at-

tentional networks. While clinical applications of RS-fMRI are

still limited, many potential clinical applications are currently be-

ing investigated and include presurgical planning for patients

with brain tumor and epilepsy. Because it is noninvasive and does

not require patient cooperation, RS-fMRI may be particularly

useful in patients who are not able to undergo currently available

methods for lesion localization. Other potential clinical applica-

tions include the identification of patients with Alzheimer disease

and various other neurologic and psychiatric diseases.
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