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MR image artifacts from periodic motion

Michael L. Wood and R. Mark Henkelman
Ontario Cancer Institute and Department of Medical Biophysics, University of Toronto, 500 Sherbourne
Street, Toronto, Canada M4X 1K9
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Artifacts due to periodic motion during the acquisition of magnetic resonance (MR) images have
been studied. A mechanical device was constructed to oscillate a small sample along any line
within a 0.15-T Technicare imager. Two- and three-dimensional images were obtained using
various frequencies and amplitudes of oscillation. Computer simulations of these experiments
yielded images which agreed with the experiments. We demonstrated that movement influences
MR images locally through blurring, and also generates ghost artifacts along the phase-encoding
directions of the Fourier transform imaging technique.
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I. INTRODUCTION

Data acquisition in magnetic resonance (MR) imaging re-
quires from 2 to 30 min, during which appreciable physiolo-
gical movement occurs. Figure 1 demonstrates how breath-
ing affects MR images. This transverse section through the
liver exhibits dark and bright bands, which interfere with
anatomical detail. In this case, the most intense bands are
artifactual ghost images of the anterior surface. Clearly, the
clinical interpretation of MR images of the abdomen de-
pends on understanding, and eventually correcting or elimi-
nating, these motion artifacts.

Rather than attempt a direct analysis of artifacts in clini-
cal images, we have studied a much simpler problem—the
point spread function (PSF) of a pointlike object in simple
harmonic motion. To first order, MR imaging can be consid-
ered a linear system. Specific sources of nonlinearities in-
clude noise, nonideal magnetic field gradients, and nonuni-
form tip angles. To the extent that nonlinearities can be
neglected, an MR image can be considered the convolution
of the object with the point spread function.

Much motion in the body is approximately periodic. Quiet
breathing, for example, displaces the thoracic wall and ab-
dominal contents by 1-2 cm, approximately every 5 s.!
Movement associated with the cardiac cycle exhibits higher

F1G. 1. Transverse MR image through the liver acquired during deep ab-
dominal breathing. Breathing artifacts are bright and dark bands repeated
vertically across the image. The additional vertical column of artifact on the
right-hand side of the image is caused by movement within the stomach.
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frequencies, typically around 1 Hz. This paper demonstrates
that simple harmonic motion leads to artifacts, or “ghosts,”
repeated at constant spacings. Figure 1 provides evidence
that complicated images, too, exhibit this feature.

The first step in the analysis determines the two-dimen-
sional MR image of a pointlike object at rest. Next, the point
spread function is derived for a point following simple har-
monic motion along the x direction, which is defined in Fig.
2. Similarities allow a condensed treatment for motion in the
y and z directions, as well as motion in three-dimensional
imaging. Computer simulations facilitate numerical evalua-
tion of the mathematics. Simulated images from a variety of
motions are finally compared with experimental images ob-
tained with the same periodic motion.

. METHOD

MR images of a point were simulated in FORTRAN. Pro-
grams considered all stages of data acquisition and recon-
struction of a point magnetization, including selective exci-
tation, echo formation, discrete sampling, and relaxation
processes, but did not model noise, magnetic field inhomo-
geneities, or temporal instabilities in the imaging system.
Simulated data could be reconstructed and analyzed directly
on the MR imager.

Experimental images were acquired on a Teslacon 0.15-T
MR imager. A mechanical device was designed and con-
structed to displace periodically a small object along any line

Y phase-encoding direction

/stotic magnetic field

Fi1G. 2. Coordinate system for MR imaging.
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within the imaging volume. The driving mechanism was lo-
cated 3 m from the imager to avoid interference from ferro-
magnetic materials. Motion amplitude, frequency, and
phase were varied to model organ motion. A solenoidal coil,
which moved with the sample, was fabricated for these ex-
periments. There were seven windings of ten turns each over
a glass tube of 1.5-mm inner diameter. The outer diameter of
the coil was 13 mm and the length was 6 mm. The signal-to-
noise was the maximum voltage of a signal with a sample
present, divided by the root-mean-squared deviation of the
voltage with a sample absent. With this coil, the signal-to-
noise per unit volume was 500 cm 3, which was a factor of
200 improvement over the 28-cm-diam head coil supplied
with the imager. Vacuum grease was chosen for the sample
because of its rapid signal decay (at 6.25 MHz, T, = 0.36 5
and T, = 0.14 s), and also the ease with which it could be
handled. The sample used to simulate a point object was
cylindrical, with diameter 1.5 mm and height 3 mm. These
dimensions compare to a typical 1.1X2.1 X 10 mm voxel.

HI. RESULTS AND DISCUSSION
A. Two-dimensional MR images
1. No motion

The principles of magnetic resonance imaging and the im-
plementation of various imaging techniques have been-de-
scribed.”® Two-dimensional MR Fourier imaging, pro-
posed by Kumar, Welti, and Ernst, is finding the most
widespread application. One improvement, first advanced
by Edelstein et al.,” is to modulate the amplitude instead of
the duration of the phase-encoding gradient, making the
method less sensitive to magnetic field nonuniformities. The
steps to acquire a signal, which is one phase-encoded projec-
tion, are shown in Fig. 3. After a delay of T, the procedure
must be repeated N, times with different phase-encoding
gradients to complete the data acquisition for an image. Fur-
thermore, G, is incremented monotonically in steps of 4G,
from — [(¥,/2)—1]4G to (N,/2)AG. Practical imple-
mentations usually employ signal averaging with different
combinations of phase shifts of the excitation pulses to sup-
press zero offsets and to cancel the free-induction decay fol-
lowing the 77/2 pulse. For ease of presentation, the analytical
derivations assume only one signal for each phase-encoding
gradient. This discrepancy will be considered further when
the theory is compared with experimental images.

x-gradient _HJ—TX_—L______

. =6

y-gradient e |

-t

=Y
z-gradient JE\_,
RF A

T

2
sampling

Ny samples seporated by At

signal N

FiG. 3. Pulse timing diagram for a signal in two-dimensional imaging.
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To acquire one phase-encoded projection, first, a selective
radio-frequency (rf) pulse flips the magnetization vector by
7/2 radians onto the y axis of a reference frame rotating
about z at the Larmor frequency. Combining a narrow fre-
quency band rf pulse simultaneously with a magnetic field
gradient along the z axis restricts this excitation to a narrow
slice in the z direction. Immediately following selective exci-
tation, the transverse component M of a magnetization M, at
position z is arbitrarily chosen to follow the Gaussian distri-
bution of Eq. (1),

M (z) = M, exp[( — 1/2)(0¥G, 2)°] (1)

where g, in combination with the selection gradient G,, de-
fines the slice thickness, and y is the gyromagnetic ratio. It
will be noted later that the particular form of Eq. {1} in-
fluences only the artifact from motion perpendicular to the
slice.

A rephasing z gradient realigns the transverse magnetiza-
tion along a single axis. Immediately following the #/2
pulse, a y gradient is switched on for a time ¢,, during which
the Larmor frequency depends on the y coordinate within
the selected slice. Upon return to a uniform magnetic field,
the Larmor frequency loses its spatial dependence, but the
phase of the transverse magnetization now depends on its y
position.

A magnetization, which is represented by a delta function
at position (x,y), emits an oscillatory signal whose amplitude
is, in general, shaped by an apodizing function E,(¢). The
signal, which is an echo caused by the nonselective 7 pulse, is
discretely sampled ¥, times at intervals of 4¢. The x gradi-
ent, which exists immediately after the 7/2 pulse, is adjusted
so that the echo peaks at the central data sample. Data sam-
ple N, /2 also coincides with the time origin for the math-
ematical development. The phase ¢ of the signal is then given

by Eq. (2),

é(t,G,) =G, xt— G, yt,). (2)

Magnetic field gradients G, and G, encode spatial infor-
mation into the signal. The sign of the G, term is negative
because the phase-encoding gradient is applied before the
echo-forming pulse inverts the phase. The signal is detected
in quadrature at a reference frequency equal to the Larmor
frequency. The complete set of data s(7,G, ) is composed of ¥,
complex signals collected under different amounts of phase
encoding and apodization in the G, direction, which is deter-
mined by E, (G, );

S(6G,) = (M, E,(t)E, (G,) exp[i# (£,G,)] d (1) (G, )]

() v, (NyGZG) , 3)
where
dit) =1 (Ztt_) o (N:At) ’ %
and
d(Gy)=m(:_z;)H(NyGZG)' Gl

In Eq. (3), M, is the transverse magnetization from a mag-
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netization at z=0, For simplicity, complete relaxation
between sets of projection measurements is assumed, and no
term representing partial recovery is included. Equation (4)
accounts for sampling of the time variable. The first compo-
nent is Bracewell’s sampling symbol,® ITI(z /At ), which is an
infinite sequence of delta functions separated by 4z. Multi-
plication of a function by ILI{z /4t ) is equivalent to sampling
it at intervals of A¢,

m(-’-):m S 8 —kdr). (6)
At k= —

The N, temporal samples which compose each phase-encod-
ed projection are selected by multiplying Eq. (6) by the rec-
tangle function® IT [¢ /(N 4t)],

0 t<(— N, /2)At,
H[t/(N, At)] =41 (— N, /24t <t<(N,/2)4t, (7)
0 (N./2)At<t.

Convolution is denoted by * and the domain is indicated by
the subscript. The periodicity introduced by convolution in
Eq. (3) makes the frequency domain also discrete.

Kumar, Welti, and Ernst® demonstrated that the two-di-
mensional Fourier transform of the data set described in Eq.
(3) represents the physical object convolved with several
broader distributions. Since the Fourier kernel is separable,
Eq. (8) arises as the product of two one-dimensional Fourier
transforms applied to the variables z and G, in Eq. (3).

FIF[s(6G,)]} = [F(F (Mo exp[ig (1.G,)]})

+, FE:(1)]*, F[E,(G,)]

x, Fld(t)]*, F[d(G,)]]

X [N, 4t f )N, AGY)), (8)
where.# denotes the Fourier transform operator. The varia-
bles f, and f, correspond to ¢ and G,, respectively.

When the signal originates from a stationary point magne-
tization, represented by a delta function at (x,, y,), the phase
given by Eq. (2) is particularly simple. In this case, the first
factor in Eq. (8) is the following two-dimensional delta func-
tion:

F(F (M, exp[id (t,G,)]})

=My6 [ f. — (W/2m)G, x,] 8 [ f, + (¥/2m)t, ¥o] - 9)
In this work, the specific form of E, () is a decaying expo-
nential. Consequently, # [ E, (¢ )] is the familiar Lorentzian.
There is no apodization in the G, direction and # [E, (G, )]
is a delta function at the origin. Equation (10) represents the
Fourier transform of Eq. (4); an equivalent expression ap-
plies for # [d (G, )].

F{d(t)} = Ni(4r) (At £;)

*, sinc(V, 4Atf), (10)
wherg
) sin(mN_ 4t f,)
N Atf)=——""—. 11
sinc(N, At f,) TN AT, (11)

The dimensions of f, are reciprocal time, but those of f, are
m/T. In both cases, however, there is a direct relation to
position,
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fo=W/2mG, x, (12)
f,=—W/2m,y. (13)
The phase inversion caused by the spin echo accounts for the
negative sign in Eq. (13). The transformations to spatial co-
ordinates, represented in Egs. (12) and (13), are applied to the

Fourier transformed signal, which is Eq. (8), to provide the
point spread function,

PSF(x,y) = K [P(xy)*, F {E,(t)}*,
- F {E,(G,)}* D(x)*, D(y)]
11 [N, At (y/2mG, x]

111 [N, t, AG (y/2m)y] , (14)
where
P(x.p) =M, b(x — xo)8(y — yo) » (15)
D (x)=1I [4z(y/2m)G, x]
*, sinc[N, At (y/27)G, x] , (16)
and
D(y)=111 [AG(y/27m)¢t, y]
* sinc [N, t, AG(y/2m)y] . (17)

To simplify the presentation, arbitrary constants have
been grouped into K. Of particular relevance is P{x,y), de-
fined in Eq. (15). Only this term in the PSF changes when a
point moves. For this reason, derivations of the PSF of mov-
ing points are an extension of the previous development.
With motion, Eq. (14) still applies, but P (x,y) becomes more
complicated than a delta function.

2. Motion

If movement alters the frequency of precession of a mag-
netization, it is unlikely to be assigned to the appropriate
image point. In this case, the PSF less accurately represents
the spin density. The simulations account for movement
throughout the entire course of data acquisition. There can
be significant cardiac motion within the typical 50-ms inter-
val between excitation and the last data sample of one phase-
encoded projection. During the same interval there is negli-
gible displacement from breathing. Between sets of
phase-encoded projections, however, sufficient time elapses
for appreciable breathing motion to occur. Motion in each of
the three orthogonal directions can be investigated separate-
ly for the following reason. Phase-sensitive detection sepa-
rates the x and y positional dependence in the signal, as can
be seen from Egs. (2) and (3). Furthermore, the z coordinate
does not affect the signal phase, but it determines the trans-
verse magnetization, which is given by Eq. (1).

a.x motion. Motion in the x direction modulates the signal
frequency because signals are measured under the presence
of a magnetic field gradient in the x direction. Sinusoidal
motion of amplitude 4 and frequency F along the x direction
can be represented by Eq. (18). Time is represented by the
variable 7. The motion phase ¢, indicates the point in the
cycle that corresponds to the zero of 7,

x =Xy + Asin2eFT + ¢,). (18)
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x(cm)

1t
m 1 1

.

F1G. 4. Trajectory of a point in sinusoidal motion. Data sampling of dura-
tion N, At and repeated at intervals of T occurs at the positions shown.
Since data sampling is periodic, T is readily expressed in terms of imaging
variables. x(T") = (1 cm) sin[27(0.2 Hz)T']; T, = 0.8 5; N, 4t = 15 ms.

1 11 Iy 1 |
Ln J Ls T(s)
Tr

Nyat

Figure 4 shows a point oscillating in the x direction and
also indicates positions coincident with data sampling. Nu-
merical values have been chosen to model breathing. It is
apparent from this example that one phase-encoded projec-
tion is measured during a brief interval. To allow for relaxa-
tion, a comparatively long time T, elapses between subse-
quent phase-encoded projections. Although data sampling
can occur when the point is anywhere along its trajectory,

positions near the displacement maxima are the most prob-
able in sinusoidal motion.

Motion was incorporated into the PSF by substituting Eq.
(18) into Eq. (2),

¢(1.G,)
=[G, [xo+ ASin2nFT +,)] t — G, yo,} . (19)

The duration of one signal is N, A¢, and ¢ is incremented
discretely from — [(N,/2) — 1]4t to (N, /2)4zt. Since a dif-
ferent phase-encoding gradient strength applies for each set
of projections, T'is related to G, ; G, is stepped monotonical-
ly from — [(N,/2) — 1]4G to (N,/2)4G. We define the
zero for T as the center of the echo of the signal which corre-
sponds to a null phase-encoding gradient,

T=1+(G,/AG)Ty . (20)

As previously stated, the effect of motion is introduced
into the image only through the oscillatory part of the signal.
The signal phase, which is expressed by Eq. (19), is separable
into the variables 7 and G,. Equation (22), which describes
the phase of the signal under these conditions, follows from
the identity'® below:

expliksin@)= 3 explim 0)J,,(k), 21)
exp[i¢ (,G,)] = expliyG, xo t)exp( — i¥G, yo t,)
i exp(i2rmFt Jexp[i2nmF (G,/AG) Ty | exp(imé,) J,.(yG, At). (22)

m= — o

Thus the continuous Fourier transform of the signal is given by

F\F( My exp[i (1G,)]}) = [Moé(fx _ Y, x0>5(fy + —y—-tyyo)]

27

2

*1, %, i explimd,) (8(f, — mF)+, F {J,(vG, 4t)})8[ , —(mFTR/AG)]]-(23)

m= - oo

Equation (23) becomes clearer when expressed in terms of spatial coordinates. The final image is identical to that obtained for

the stationary object, except for the P (x,y) term,
Px,y) =K [M, 5(x — xo)6( y — yo)]

fo( 5 enpiime fox - Z2E) e, 7 17,06, a011) sty + myc)). 24
27FTy
Yo = v AGt, ’ (25)
A Toleld)
F Iy G, 4t)] ={ yG,d?— 2 = (26)
0 |x|>4.

K incorporates all constants, J,, represents the mth-order
Bessel function of the first kind, and T, depicts the mth-
order Chebyshev polynomial.'!

Equation (24) shows how motion in the x direction affects
the PSF. If the displacement amplitude A is zero, then Eq.
(22) comprises only one term and Eq. (24) reduces, as expect-
ed, to Eq. (15). Only the x component of the two-dimensional
artifact depends on the motion phase ¢, . Equation (26) van-
ishes for x greater than A4, and it also peaks near the ends of

Medical Physics, Vol. 12, No. 2, Mar/Apr 1985

r

the displacement, as would be expected from the probability
distribution of an oscillating point. It may be noted in this
equation, which was obtained from a continuous Fourier
transform, that the maximum amplitude of higher order
terms does not appear to decrease. This will be clarified later.
Nonzero-order Bessel functions of argument zero are zero.
Then, by a property of the Fourier transform, the integral
over x in Eq. (26) vanishes for nonzero m, and leads to the
same value for m zero as for a stationary point. Image inten-
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F1G. 5. Simulated image of a point oscillating sinusoidally in x. Blurring in
the x direction extends over a range of 2.0 cm. A 28X28 cm x—y plane is
displayed. There are ghosts separated by 2.0 cm in the y direction. Motion
parameters: F = 0.2 Hz, 4 = 1.0cm, ¢, = 0. Relevant imaging parameters:
Tr =0.355,4G=0.33 uT/m, t, = 2.5 ms. Under these conditions, the
predicted separation y is also 2.0 cm.

sity is therefore conserved. Convolution with the delta func-
tion in the x direction in Eq. (24) typically shifts each term
described by Eq. (26) by less than 10 pm.

The last factor in Eq. (24) repeats the x-dependent line
shape along the p direction. The spacing y. is determined
by Eq. (25). First, the higher the frequency of motion, the
wider the spacing. Second, the longer the duration between
changes in the phase encoding, the further apart are the rep-
etitions. Third, decreasing either the duration or the amount
by which the phase-encoding gradient is incremented in-
creases the separation.

The previous theory accounts for many features in both
simulated and experimental images. Figure 5 is a simulated
image in the x—y plane for a point following Eq. (18). Al-
though image intensities are complex numbers, the modulus
is displayed. The image, then, is not a complete point spread
function. Numerical values of the parameters were compar-
able to those employed in imaging. Although movement was
confined to the x direction, the image contains bands spaced
at constant intervals in the y direction. Equation (25) ac-
counts for the separation of the bands. The brightest band is
the blurred image of the point as it moves along x and, for

TABLE I. Summary of parameters and measurements of Figs. 6-8.

F1G. 6. Experimental images of an x-y plane with a small object oscillating
sinusoidally along the x direction. Each quadrant is a separate image with a
28 %28 cm field of view. Four images demonstrate how motion artifacts
depend on the motion frequency F, amplitude 4, and the repetition time T’y
between signals (see Table I).

this reason, it is not considered artifactual. The other bands
are ghost artifacts.

The ghosts in the simulation extend far beyond the band-
width, determined by sampling, and thus the image exhibits
aliasing. Pixels with the greatest magnitude are bounded by
the two limits of displacement. It appears that the artifact
also extends beyond the boundary, but pixels have exceed-
ingly small magnitudes. The image intensity within higher
order ghosts slowly decreases. Equations (24) and (26), based
on a continuous Fourier transform, however, do not predict
this decrease. These last two equations are only part of the
discrete PSF [Eq. (14)]. The convolutions in Eq. (14) decrease
the amplitude of higher order ghosts especially, because
these ghosts exhibit sharper peaks. Also, the variable ¢ has a
small range. With the parameters chosen, the argument of
the Bessel function in Eq. (22) remains small, so that only a
restricted portion of Eq. (22) is represented.

The theory also helps explain the four experimental MR
images in Fig. 6. Each displays the modulus of the pixels in
an x~y plane and results from a separate experiment. Rel-
evant parameters and measurements are summarized in Ta-
ble I. As alluded to previously, each phase-encoded projec-
tion was averaged four times before changing the amplitude

Intensity relative to center (%)

F A Ty Spacing® (cm) Simul. Exper.
Figure (Hz) (cm) (s) ¥4 m ghost 1 2 1 2
6(a) 0.1 1.0 0.8 23 2.1 65 60 75 60
6(b) 0.1 0.5 0.8 23 23 60 50 70 55
6(c) 0.2 1.0 0.8 4.6 4.3 65 55 80 60
6(d) 0.1 1.0 1.6 4.6 43 65 55 75 65
7(b) 0.2 0.25 0.8 4.6 4.7 65 50 70 50
7(c) 0.2 0.5 0.8 4.6 4.5 75 65 80 55
7(d) 0.1 0.5 0.8 2.3 2.3 75 60 80 60
8(a) 0.1 1.0 0.8 2.3 23 55 40
8(b) 0.1 2.0 0.8 2.3 22 55 55
8(c) 0.2 2.0 0.8 4.6 4.6 60 55
8(d) 0.1 20 0.8 23 23 75 50

* Values are for p (predicted) and m (measured) spacing.

Medical Physics, Vol. 12, No. 2, Mar/Apr 1985
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of the phase-encoding gradient. As a result, four spatial posi-
tions of the point became associated with each phase-encod-
ed projection. The experimental images, nevertheless, were
analyzed with the theory previously developed. The repeti-
tion times in Table I, which were four times larger than in the
actual experiments, were employed in the analytical expres-
sions.

The experimental images, like the simulation, exhibit hor-
izontal blurring and also uniformly spaced bands in the ver-
tical direction. The displacement amplitude in Fig. 6(b) was
one-half that of Fig. 6(a), and this halved the horizontal ex-
tent of the artifact, but left the spacing of the bands un-
changed. The frequency of motion in Fig. 6(c) was twice that
of Fig. 6(a), and the time between successive phase-encoded
projections in Fig. 6(d) was doubled. As predicted by Eq.
(24), the vertical separation of the ghosts also doubled. Bands
which would have appeared outside the imaging field were
“wrapped around” due to aliasing. The result is an apparent
doublet structure.

The magnitude of the pixels within the ghosts decreased
slowly with distance from the center of oscillation. For a
quantitative appraisal, the magnitudes of pixels in regions
comprising ghosts were summed. The sum was expressed as
a percentage of the sum of the intensity of the band through
the center of oscillation. The artifact pattern was symmetric
about the center, as predicted, and ghosts on either side of
the center were averaged. Table I summarizes the measure-
ments on the experimental images in Fig. 6 and on simula-
tions of the experiments. Averaging of the phase-encoded
projections, in particular, was incorporated in the simula-
tions. Intensity measurements on the experiments were sys-
tematically greater than on the simulations. The accuracy
was estimated to be 10%. A major source of uncertainty was
the overlap of ghosts, which was caused by aliasing. Mea-
surements on the experimental images were compensated
for background noise. Within the limits of accuracy, the in-
tensity in each ghost was comparable in Figs. 6(a), 6(b), and
6(d). As expected, neither the frequency of oscillation, nor
the repetition time, influenced the intensity. The intensity of
the ghosts decreased with distance from the center. Further-
more, the decreased intensity within the ghosts in Fig. 6(b)
was attributed to the smaller motion amplitude.

b. y motion. Displacement along the y direction disrupts
the phase encoding by causing additional phase modulation
of each signal. The duration of the y gradient is of the order
of milliseconds—too short for breathing motion to be signifi-
cant while the gradient is on. Since displacement perpendic-
ular to the imaging gradient G,, does not affect the x compo-
nent of the image, artifacts from movement in the
phase-encoding direction arise from relocation of a magneti-
zation between the application of successive y gradients.
Figure 3 shows that motion along the y direction does not
affect data sampling in a particular phase-encoded projec-
tion. Consequently, the motion time 7" depends only on G,,,

T=(G,/AG)Tx . (27)

As with x motion, the data is separable in # and G,, and
motion changes only the P (x,y) factor of the PSF for the point
at rest,
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P(x.y) = KM, 6(x — x,) 8(y — yo)

o| S expl—imd,) 8y —mys)

m= — oo

(=1 F {J.lr41, G} | (28)

Constants are included in K, and yg is the spacing of the
artifact, which is given by Eq. (25). The artifact described by
Eq. (28) is strikingly similar to that given by Eq. (24). The
Fourier transform of the Bessel function is given by Eq. (26).
The factor { — 1)™ arises from the transformation of Eq. (13).
Equation (28) predicts that the point is blurred between the
extremities of its displacement, this time in the y direction.
A banding pattern is repeated along the phase-encoding di-
rection at intervals of y.. In this case, the structure of each
band reflects the corresponding Chebyshev polynomial. The
motion phase ¢, influences the artifact by modulating the
distribution between the real and imaginary components of
the image. The integral over y vanishes for each nonzero m
term of Eq. (28).

Figure 7 contains images in an x—p plane from four experi-
ments with sinusoidal motion of a small object in the y direc-
tion. The modulus of the complex image is displayed. As in
all of the experiments, four phase-encoded projections were
averaged before changing the strength of the phase-encoding
gradient. Figure 7(a) is an image of the stationary point and
identifies the center about which oscillations occurred. Im-
ages involving motion contained not only this central loca-
tion, but also ghosts in the y direction. Table I reveals that
the motion amplitude for Fig. 7(b) was one-half that in the
two lower images, and as a result, blurring was less extensive.
As expected, ghosts were closer together in Fig. 7(d), because
the frequency of oscillation was reduced by a factor of 2.

As with x motion, quantitative analysis of the detailed
structure of the experimental images was hampered by the
overlap of ghosts. Averaging also limited the application of
the theory. There was less image intensity in bands removed
from the center of oscillation. The explanation that applied
to x motion extends to this case. The intensity of several
ghosts was determined in the same manner as before, and

FIG. 7. Four experimental MR images of a 28 X 28 cm x-y plane. In (a) there
was no motion, but in the remaining three images, the small object oscillated
vertically about the position in (a) (see Table I).
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summarized in Table I. There was close agreement between
simulations and experiments. There was less intensity within
the first two ghosts for the smaller amplitude motion. Fur-
thermore, similar intensities in Figs. 7(c) and 7(d) support the
theoretical prediction that the frequency of motion should
not influence the intensity.

¢. z motion. In most cases, there is insignificant movement
during the selective excitation pulse, which lasts only a few
milliseconds. The extent to which a magnetization is flipped

J

P(x.p2) = KMy exp [ — }(o7G, A)*]8(x — X0}y — yo)

., [ exp [ — i, 9/v6]

= —

. [exp[ 8. - 1) ;y—] RCRAT ayG,A)z]a(anyc)}-

—

I, represents a modified Bessel function of the mth order,
and all constants are incorporated in K.

Equation (29) predicts repetition at intervals y along the
phase-encoding direction. Furthermore, the motion phase
#, does not affect the magnitude of the artifact, but only
influences the relative weight between the real and imagi-
nary components of Eq. (29). What is unique to z motion is
that the artifact becomes more complicated when the center
of oscillation does not coincide with the center of the slice,
but is a distance z, from the slice center.

The artifact from z motion depends on the shape of the
selected slice, which was Gaussian, for the derivation. In this
case, the relative magnitude of each term within the summa-
tion depends on the amplitude of motion. Simulations veri-
fied that higher order terms in the summation become signif-
icant for larger amplitudes. The dependence of the artifact
on both the shape of the slice and the center of oscillation
rendered simulation of the exact experimental conditions
impractical.

Figure 8 presents four experimental images involving an
object oscillating in the z direction. The center of oscillation
did not coincide with the center of the slice, which was not
Gaussian. As before, four phase-encoded projections were

FIG. 8. Experimental MR images of a 28 X 28 cm x—y plane demonstrate the
effects of oscillation perpendicular to the plane. Bands exhibit slight blur-
ring in x due to vibration of the sample (see Table I).
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depends essentially on the z coordinate at the start of excita-
tion. An artifact will ensue if, for different signals, motion
causes the transverse magnetization to differ in magnitude.
Displacement perpendicular to the selected slice modulates
the magnitude of the transverse magnetization. Then, M of
Eq. (1) becomes a function of 7, which is related to G,
through Eq. (27). Although signal phase is unaffected by z
motion, the P (x,y) factor of the PSF now incorporates the G,
dependence in M.

S Ll0* ¥ G2 Azl y + mya)]

(29)

|
averaged. The modulus of the complex image is displayed in
the selected x—y plane. As expected from Eq. (29), the artifact
was confined to the phase-encoding direction. The intensity
within the first two ghosts is summarized in Table I. Mea-
surements on simulations could not be compared. Ghost
artifacts are more apparent in Fig. 8(a) than in Fig. 8(b); there
was less intensity in the first two ghosts for the motion with
the smaller amplitude. The frequency of motion, not the am-
plitude, influenced the spacing of the ghosts. In particular,
doubling the frequency of motion between Figs. 8(b) and 8(c)
doubled the spacing. Aliasing caused ghosts to overlap in
Fig. 8(c). The difference in Figs. 8(b) and 8(d) was the center
of oscillation. Ghosts in both images are similarly spaced,
but have different intensities relative to the center. This fea-
ture, too, is in agreement with Eq. (29).

B. Three-dimensional MR images
1. No motion

Artifacts from periodic motion in three-dimensional vol-
ume images differ from those in two-dimensional images.
The technique to generate a three-dimensional image resem-
bles that for two dimensions, except for the involvement of
the z gradient. Immediately following a nonselective 7/2 rf
pulse, G, is applied for ¢, to phase-encode the z direction
analogously to the y direction. The pulse sequence, which is
a slight modification to Fig. 3, is repeated after delays of T,
for all possible phase-encoding combinations. Data acquisi-
tion takes substantially longer than for a single two-dimen-
sional slice. Specifically, for each G, there are N, repetitions
for each value of G,. Then, the amplitude of G, is altered for
another N, repetitions and this process is repeated N, times
to complete data acquisition. The mathematical representa-
tion of the complete data set is a straightforward extension of
the two-dimensional case;

¢ (t,Gy,Gz) = V(Gx Xt — Gy yty - Gz th) ’ (30)
s(t,G,,G,) = {M, E(t)E,(G,)E,(G.)
exp[i¢ (,G,,G.)] d(t)d (G,)d (G.)}
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*,I_[I( ! )*G 11
N, At v

where d (G,), the logical extension to the third dimension,
retains the form of Eq. (5), and E, (G,) describes apodization.
Due to the separability of Eq. (31), and the similarity in the
G, and G, dependence, three-dimensional PSFs resemble
the two-dimensional PSFs previously derived. Three-dimen-
sional Fourier transformation of the data, followed by con-
version to spatial coordinates through Egs. (12}, (13), and
(32), leads to the PSF, for

f,=—Ww/2m, z, (32)
PSF(x,y,z)
=K [Pxyzp. F (E )%, F (E}*, F (E,}
s, D(x)+, D(y)*, D (@)]-LLI[ N, At (y/2mG, x]
L[N, t, AG (y/2mly|II[ N, 1, AG (y/2m)z] . (33)

Kincludes all constants. Apodization can beincluded by E,
E,, and E, ; there is no apodization in the y or z directions in
the experiments. D (x), D ( y), and D (z) arise from the discrete
nature of data sampling, and D (x) is defined in Eq. (16). The
simplest example is a stationary point object at (x,, ¥4, Zo). In
this case, P (x,p,z) is given by Eq. (34),

Px,p.2) = Mo 5(x — x0)5(y — yolblz — Zo) - (34)

(7 26) (5 50)
N, AG N, AG

(31)

2. Motion

Even with motion, evaluation of the PSF proceeds as be-
fore, and the phase, which is given by Eq. (30), remains sep-
arable in ¢, G,, and G,. Since the z gradient now phase en-
codes analogously to the y gradient, motion introduces
periodicity also in the z direction; since more time elapses
between changes to the z gradient, the repeat distance along
the z direction is substantially larger.

Sinusoidal motion in the x direction is still represented by
Eq. (19). The motion time T is related to the imaging param-
eters through Eq. (35). After substituting the trajectory into
the signal phase, P (x,y,z) is evaluated,

T=t+(G,/AG)Ty +(G,/AG)N, Ty, (35)
P(x.y.2) = K [ My 6(x — x0)0( y — yoblz — zo) 1%, *, *,

27mF )

S _exiims.)-(ofx - 2

m= — o

o F (IplyG, A1) 81— myhla — mi, yo)] - (36

The last factor of Eq. (36) propagates bands along the z direc-
tion; their separation is N, times greater than the repetitions
in the p direction, and they would extend beyond the image
volume if aliasing did not fold them back.

Motion along the z direction in three-dimensional imag-
ing does not alter the transverse magnetization, but is com-
pletely analogous to y motion. Instead, both y- and z-direct-
ed motion disrupt the regular phase encoding in the same
way. The motion time 7 no longer depends on the data sam-
pling time . Because of the similarity between phase encod-
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ingin the y and z directions, P (x,y,z) for the case of y motion
only is presented,

Px.y.2)
=K [ My 6(x — x0)8(y — yo)blz — z5)] *, %,

X( Y exp(—img,)(—1)"

m= —

X[ F [ Jnlrdt, G,)] *, 63 — myc} 8z — mN, yg)).
37

Since motion artifacts in three-dimensional imaging are
not confined to a plane, their illustration is more complicat-
ed. In Fig. 9, planes with y and z orientations from four
different three-dimensional images were selected. As well as
blurring along the direction of motion, in all cases there are
ghosts in both phase-encoding directions. Note that even the
first ghost of all of the images was aliased in the z direction.
During the acquisition of the upper images there was oscilla-
tion only along the z direction; the motion frequency in the
upper left image was twice that in the upper right image.
There are bands repeated not only along the y direction (ver-
tical), but also in the z direction {horizontal). The separation
in both directions is greater for the higher frequency motion.
Asexpected, within one ghost the intensity is greatest at both
ends of displacement. Similarly, Fig. 9(c) typifies images in-
volving oscillation in the y direction. As expected, the point
is blurred vertically. Finally, Fig. 9(d) demonstrates horizon-
tal sinusoidal motion. Here the artifact and image are not
confined to a single x coordinate and, therefore, only some of
the artifact is revealed in this y~z plane.

IV. SUMMARY

The point spread function has been calculated for both a
stationary point object and one executing simple harmonic
motion. Through comparison with experimental images,
two effects of motion have been identified. First, there is
blurring between the limits of displacement. Second, a co-
herence develops between the imaging steps and the motion,
which is expressed as ghost structures repeated along the

FIG. 9. The same 28 X 28 cm y—z plane ( y vertical, z horizontal) from four
different three-dimensional images. For all of the experiments, the repeti-
tion time was 0.2 s and the displacement amplitude was 0.5 cm. Direction of
motion and motion frequency Fin Hz: (a} 2, 0.2; (b) z,0.1; (c) »,0.2; and (d) x,
0.2.
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phase-encoding direction(s). Although consecutive data
samples are separated by microseconds, the time interval
between signals with changed phase encoding is in the range
of seconds. In three-dimensional images, a much longer time
passes before a change to phase encoding in the z direction.
Consequently, spacing between ghosts is too small to discern
in the x direction, on the order of centimeters in the y direc-
tion and, in three-dimensional imaging, sufficiently large to
be completely aliased in the z direction. In three-dimensional
images, motion artifacts are not confined to individual slices,
and motion anywhere within the imaging volume can affect
the entire image. It might, therefore, be preferable to acquire
separate images of consecutive slices, instead of an entire
volume, and thereby confine the extent of motion artifacts.
The point spread function analysis has led to a quantita-
tive characterization of motion artifacts. Although one spe-
cific imaging technique was considered, some results are

general. The most apparent feature of the artifact, the spac- -

ing between ghosts, arose from the long time interval
between successive phase-encoded projections. Other imag-
ing techniques which employ phase encoding and require
long imaging times would also exhibit ghosts. Finer struc-
ture of motion artifacts, however, would depend on the par-
ticular technique. It should be possible to eliminate motion
artifacts if the trajectory of the motion is completely known.
It remains to be determined, however, how much prior
knowledge of the motion is necessary, and also whether pro-
posed corrections can be implemented in practice.

Medical Physics, Vol. 12, No. 2, Mar/Apr 1985

ACKNOWLEDGMENTS

This investigation was supported by the Ministry of
Health of the Province of Ontario, the National Cancer In-
stitute of Canada, and the Ontario Cancer Treatment and
Research Foundation. One of the authors (MW) is a recipi-
ent of the Harold E. Johns Fellowship in Medical Physics.

!G. Harauz and M. J. Bronskill, J. Nucl. Med. 20, 733 (1979).

ZR. L. Dixon and K. E. Ekstrand, Med. Phys. 9, 807 (1982).

3Program and Book of Abstracts: The Society of Magnetic Resonance in
Medicine (Society of Magnetic Resonance in Medicine Inc., Berkeley,
1983).

“P. Mansfield and P. G. Morris, NMR Imaging in Biomedicine (Academic,
New York, 1982).

5A. Kumar, D. Welti, and R. Ernst, J. Magn. Reson. 18, 69 (1975).

SW. S. Hinshaw and A. H. Lent, Proc. IEEE 71, 338 (1983).

"W. A. Edelstein, J. M. S. Hutchison, G. Johnson, and T. Redpath, Phys.
Med. Biol. 25, 751 (1980).

8R. N. Bracewell, The Fourier Transform and its Applications, 2nd ed.
(McGraw-Hill, Toronto, 1978), p. 78.

“Reference 8, p. 52.

' Handbook of Mathematical Functions, edited by M. Abramowitz and I.
A. Stegun, National Bureau of Standards Applied Mathematics Series 55
[Natl. Bur. Stand. (U.S.), Washington, D.C., 1964], p. 361.

""Reference 10, p. 486.

12M. Haacke, Picker International (personal communication).



